

SCHOOL OF ELECTRICAL AND COMMUNICATION B.TECH. DEGREE PROGRAMME ELECTRICAL AND ELECTRONICS ENGINEERING VTR-UGE-2021 REGULATIONS

VISION & MISSION OF THE UNIVERSITY

Vision:

To create, translate and disseminate frontiers of knowledge embedded with creativity and innovation for a positive transformation of emerging society.

Mission:

To nurture excellence in teaching, learning, creativity and research; translate knowledge into practice; foster multidisciplinary research across science, medicine, engineering, technology and humanities; incubate entrepreneurship; instill integrity and honor; inculcate scholarly leadership towards global competence and growth beyond self in a serene, inclusive and free academic environment.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING VISION AND MISSION OF THE DEPARTMENT

Vision:

To provide intellectual curiosity in the field of Electrical and Electronics Engineering that produces skilled interdisciplinary engineers to serve the society.

Mission:

M1	To inculcate knowledge among the students through comprehensive curriculum.
M2	To enrich the academic experience in terms of flexibility, teamwork, design skills, practice and industrial trainings.
M3	To produce competent graduates suitable for a successful career in Industry and Research

B.TECH - ELECTRICAL AND ELECTRONICS ENGINEERING

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

On successful completion of graduation, graduates will be able to

PEO1	Design and analyse electrical and electronic systems by applying the knowledge of mathematics and engineering
PEO2	Provide practical solution to multidisciplinary societal problems through innovative ideas
PEO3	Secure positions and continue as valued, creative and proficient employees in a wide variety of fields and industries for a rewarding career

PROGRAMME SPECIFIC OUTCOME (PSOs):

PSO1. Apply fundamental of mathematics, physical sciences and electrical & electronics engineering to analyze and solve complex real world problems.

PSO2. Design, develop and implement electrical, electronics and allied engineering systems to meet the demands of industry and suggest solutions for social needs.

PROGRAMME OUTCOMES (POs):

The Electrical and Electronics Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

<u>PO4.</u> Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

<u>PO6.</u> The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

<u>PO7.</u> Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

<u>PO9.</u> Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Section Number	Course Category	Minimum Credits Required
7.2.1	Foundation Courses (FC)	56
7.2.2	Programme Core (PC)	58
7.2.3	Programme Elective (PE)	18
7.2.4	Open Elective (OE)	12
7.2.5	Independent Learning (IL)	14
7.2.6	Industry/Higher Institute Learning Interaction (IHL)	2
7.2.7	Professional Proficiency Courses (PPC)	4
	Total	164

Minimum credits required for regular students in various course categories

Minimum credits required for Lateral Entry students in various course categories

Section Number	Course Category	Minimum Credits Required
7.2.1	Foundation Courses (FC)	22
7.2.2	Programme Core (PC)	48
7.2.3	Programme Elective (PE)	18
7.2.4	Open Elective (OE)	12
7.2.5	Independent Learning (IL)	14
7.2.6	Industry/Higher Institute Learning Interaction (IHL)	2
7.2.7	Professional Proficiency Courses (PPC)	4
	Total	120

VTR UGE 2021 - EEE Curriculum

Programme Core (PC) Courses – Regular Students

SI.No **Course Code Course Name** Page No. 1 10211EE101 **Circuits Analysis** 19 **DC Machines & Transformers** 2 10211EE102 21 3 10211EE103 AC Machines 23 4 25 10211EE104 **Digital Electronics** 27 5 10211EE105 Linear Control Systems 6 10211EE106 Measurements and Instrumentation 29 7 10211EE107 Transmission & Distribution 31 8 **Power Electronics** 33 10211EE108 9 35 10211EE109 **Power System Analysis** 37 10 10211EE110 **Power System Operation & Control** 11 10211EE111 **Electrical Machine Design** 39 12 10211EE112 Microprocessor & Microcontroller 41 43 13 10211EE113 **Electronic Circuits** 14 10211EE114 **Linear Integrated Circuits** 45 Protection and Switch Gear 15 10211EE115 47 16 10211EE201 **Electromagnetic Fields** 50 17 10211EE301 **Circuits and Devices Lab** 53 10211EE302 DC Machines & Transformers Lab 54 18 19 56 10211EE303 AC Machines Lab 20 10211EE304 **Control & Instrumentation Lab** 58 21 10211EE305 Microprocessor & Microcontrollers Lab 60 22 10211EE306 Analog and Digital Electronics Lab 62 23 **Power Electronics Lab** 10211EE307 63 24 **Power System Simulation Lab** 10211EE308 65

List of Courses for 58 Credits

VTR UGE 2021 - EEE Curriculum

Programme Core (PC) Courses – Lateral Students

SI.No	Course Code	Course Name	Page No.
1.	10211EE101	Circuits Analysis	19
2.	10211EE104	Digital Electronics	25
3.	10211EE105	Linear Control Systems	27
4.	10211EE107	Transmission and Distribution	31
5.	10211EE108	Power Electronics	33
6.	10211EE109	Power System Analysis	35
7.	10211EE110	Power System Operation and Control	37
8.	10211EE111	Electrical Machine Design	39
9.	10211EE112	Microprocessor and Microcontrollers	41
10.	10211EE113	Electronic Circuits	43
11.	10211EE114	Linear Integrated Circuits	45
12.	10211EE115	Protection and Switch Gear	47
13.	10211EE201	Electromagnetic Fields	50
14.	10211EE301	Circuits and Devices Lab	53
15.	10211EE304	Control and Instrumentation Lab	58
16.	10211EE305	Microprocessor and Microcontrollers Lab	60
17.	10211EE306	Analog and Digital Electronics Lab	62
18.	10211EE307	Power Electronics Lab	63
19.	10211EE308	Power System Simulation Lab	65

List of Courses for 48 Credits

Programme Elective (PE) Courses

List of Courses for 18 Credits

SI No.	Course Code	Lecture Courses	Page No.		
	Power Systems Domain				
1.	10212EE121	Power Quality Engineering	70		
2.	10212EE122	High Voltage Engineering	72		
3.	10212EE123	Advances in Power System	74		
4.	10212EE124	Power Plant Engineering	76		
5.	10212EE125	High Voltage Direct Current Transmission	78		
6.	10212EE126	Load Forecasting and Generation Forecasting	80		
7.	10212EE127	Load Dispatching	82		
8.	10212EE128	Reactive Power Management	84		
9.	10212EE129	Smart Grid	86		
		Power Electronics & Drives Domain			
1.	10212EE130	LED Lighting Technology	88		
2.	10212EE131	Flexible AC Transmission Systems	90		
3.	10212EE132	Modern Power Converters	92		
4.	10212EE133	Automotive Electrical & Electronics Systems	94		
5.	10212EE134	Fundamentals of Electric and Hybrid Vehicles	96		
6.	10212EE135	Special Electrical Machines	98		
7.	10212EE136	Electromagnetic Interference & Compatibility	100		
8.	10212EE137	Solid State Drives	102		
		Embedded Systems Domain			
1.	10212EE138	Principles of Robotics	104		
2.	10212EE139	Embedded Systems	106		
3.	10212EE140	Embedded Control of Electric Drives	108		
4.	10212EE141	VLSI System & Design	110		
5.	10212EE142	Wearable Electronics	112		

	Instrumentation & Control Domain				
1.	10212EE143	Virtual Instrumentation	114		
2.	10212EE144	Digital Control Systems	116		
3.	10212EE145	Introduction to Nonlinear Dynamical Systems	118		
4.	10212EE146	Discrete Time Signal Processing	120		
5.	10212EE147	Signals and Systems	122		
6.	10212EE148	Soft Computing	124		
7.	10212EE149	Bio Medical Instrumentation	126		
8.	10212EE150	Process Automation	128		
		Energy Domain			
1.	10212EE151	Utilization of Electrical Energy	130		
2.	10212EE152	Energy Auditing and Management	132		
3.	10212EE153	Electrical Safety & Safety Management	134		
4.	10212EE154	Renewable Energy Sources	136		
5.	10212EE155	Solar Electric Systems	138		
6.	10212EE156	Wind Energy Conversion Systems	140		
7.	10212EE157	Generation Planning	142		
8.	10212EE158	Solar Photovoltaic Systems	144		
	-	Electronics Domain			
1.	10212EE159	Nano Electronics	146		
2.	10212EE160	Green Electronics	148		
3.	10212EE161	Automotive Electronics	150		
4.	10212EE162	Vehicle Electronics	152		
5.	10212EE163	Optoelectronic Devices	154		
6.	10212EE164	Electronic Circuit Simulation and PCB Design	156		
7.	10212EE165	Medical Electronics	158		
	Integrated Courses				
1.	10212EE201	Applied Soft Computing	160		
2.	10212EE202	Switch Mode Power Supply Design and Development	162		
3.	10212EE203	Electrical Machines (only for lateral entry students)	165		
	1	Laboratory Course			
1.	10212EE301	Voltage Stabilizer Fabrication	168		

Open Elective Courses

List of Courses for 12 Credits

SI.No	Course Code	Lecture Courses	Page No.
1.	10213EE101	Neural Network and Fuzzy Logic Control	172
2.	10213EE102	Bio Medical Instrumentation	174
3.	10213EE103	Introduction to Automation	176
4.	10213EE104	Virtual Instrumentation	178
5.	10213EE105	Finite Element Analysis	180
6.	10213EE106	EMI & EMC Techniques	182
7.	10213EE107	Power Supply Quality	184
8.	10213EE108	LED Lighting	186
9.	10213EE109	Transducers And Sensors	188
10.	10213EE110	Signals and Systems	190
11.	10213EE111	Wearable Electronics	192
12.	10213EE112	Embedded System	194
13.	10213EE113	Estimation For Electrical Wiring	196
14.	10213EE114	Renewable Energy Systems	198
15.	10213EE115	Automotive Electrical & Electronics Systems	200
16.	10213EE116	Hybrid Electric Vehicles	202
17.	10213EE117	Introduction to Robotics	204
18.	10213EE118	Standards, Calibration, Testing & Maintenance of Electrical Equipments	206
19.	10213EE119	Electrical Safety, Operation & Regulations	208
20.	10213EE120	Energy Conservation and Management	210
21.	10213EE121	Electrical Machines	212
22.	10213EE122	Industrial Electrical Systems	214

SI.No	Course Code	Lecture Courses	Page No.	
23.	10213EE123	Computer Aided Analysis of Electrical Apparatus	216	
24.	10213EE124	Green Energy Resources	218	
25.	10213EE125	Robotics and Automation	220	
26.	10213EE126	Wind Energy Technology	222	
27.	10213EE127	Electrical Safety and Safety Management	224	
	Integrated Courses			
28.	10213EE201	Switch Mode Power Supply design and Development	226	
	Laboratory Courses			
29.	10213EE301	Voltage Stabilizer Fabrication	229	

B.Tech EEE Specialization in Computer Systems

List of Courses for 18 Credits

SI.No	Course Code	Lecture Courses	Page No
1.	10212EE101	Computer Architecture	233
2.	10212EE102	Operating Systems	235
3.	10212EE103	Object Oriented Programming	237
4.	10212EE104	Data Structures and Algorithms	239
5.	10212EE105	Computer Networks and Communication	241
6.	10212EE106	Artificial Intelligence	243

SI.No	Course Code	Lecture Courses	Page No
1.	10213EE131	Charging Station	247
2.	10213EE132	Battery Management System	249
3.	10213EE133	Electric Propulsion System and Control	251
4.	10213EE134	Hybrid Electric Vehicle Technologies	253
5.	10213EE135	Energy Storage Systems and Control	255
6.	10213EE136	Modelling and Simulation of EV	257

Minor Degree in Electric Vehicle Technology List of Courses for 18 Credits

Minor Degree in Renewable Energy Sources List of Courses for 18 Credits

S.No.	Course Code	Lecture Courses	Page No.
1.	10213EE141	Renewable Energy	261
2.	10213EE142	Wind Energy Conversion Systems	263
3.	10213EE143	Solar Photovoltaics: Fundamentals, Technology and Applications	265
4.	10213EE144	Conversion of Energy in Buildings	268
5.	10213EE145	Solar Thermal Energy Systems	270
6.	10213EE146	Distributed Generation and Integration of Renewable Energy with Grid	272

B.Tech. EEE with Honours in Smart Grid Technologies
List of Courses for 18 Credits

Sl.No	Course Code	Lecture Courses	Page No.
1.	10212EE171	Smart Grid	276
2.	10212EE172	Energy Management and SCADA	278
3.	10212EE173	Power System Restructuring	280
4.	10212EE174	Distributed Generation and Micro Grid	282
5.	10212EE175	IoT Applications in Smart Grid	284
6.	10212EE176	AI for Smart Grid Systems	286

VTR UGE 2021 - EEE Curriculum Programme Core (PC) Courses – Regular Students

S.NO.	COURSE CODE	COURSE NAME	L	т	Р	С
		LECTURE COURSES				
1.	10211EE101	Circuits Analysis	3	1	0	4
2.	10211EE102	DC Machines and Transformers	3	0	0	3
3.	10211EE103	AC Machines	3	0	0	3
4.	10211EE104	Digital Electronics	3	0	0	3
5.	10211EE105	Linear Control Systems	2	1	0	3
6.	10211EE106	Measurements and Instrumentation	2	0	0	2
7.	10211EE107	Transmission and Distribution	3	0	0	3
8.	10211EE108	Power Electronics	3	0	0	3
9.	10211EE109	Power System Analysis	3	1	0	4
10.	10211EE110	Power System Operation and Control	3	0	0	3
11.	10211EE111	Electrical Machine Design	3	1	0	4
12.	10211EE112	Microprocessor and Microcontrollers	3	0	0	3
13.	10211EE113	Electronic Circuits	3	0	0	3
14.	10211EE114	Linear Integrated Circuits	3	0	0	3
15.	10211EE115	Protection and Switch Gear	3	0	0	3
		INTEGRATED COURSES				
16.	10211EE201	Electromagnetic Fields	2	0	2	3
		LABORATORY COURSES				
17.	10211EE301	Circuits and Devices Lab	0	0	2	1
18.	10211EE302	DC Machines and Transformers Lab	0	0	2	1
19.	10211EE303	AC Machines Lab	0	0	2	1
20.	10211EE304	Control and Instrumentation Lab	0	0	2	1
21.	10211EE305	Microprocessor and Microcontrollers Lab	0	0	2	1
22.	10211EE306	Analog and Digital Electronics Lab	0	0	2	1
23.	10211EE307	Power Electronics Lab	0	0	2	1
24.	10211EE308	Power System Simulation Lab	0	0	2	1
		TOTAL				58

VTR UGE 2021 - EEE Curriculum

Programme Core (PC) Courses – Lateral Entry students

S.NO.	COURSE CODE	COURSE NAME	L	т	Р	с
		LECTURE COURSES				
1.	10211EE101	Circuits Analysis	3	1	0	4
2.	10211EE104	Digital Electronics	3	0	0	3
3.	10211EE105	Linear Control Systems	2	1	0	3
4.	10211EE107	Transmission and Distribution	3	0	0	3
5.	10211EE108	Power Electronics	3	0	0	3
6.	10211EE109	Power System Analysis	3	1	0	4
7.	10211EE110	Power System Operation and Control	3	0	0	3
8.	10211EE111	Electrical Machine Design	3	1	0	4
9.	10211EE112	Microprocessor and Microcontrollers	3	0	0	3
10.	10211EE113	Electronic Circuits	3	0	0	3
11.	10211EE114	Linear Integrated Circuits	3	0	0	3
12.	10211EE115	Protection and Switch Gear	3	0	0	3
		INTEGRATED COURSES				
13.	10211EE201	Electromagnetic Fields	2	0	2	3
		LABORATORY COURSES				
14.	10211EE301	Circuits and Devices Lab	0	0	2	1
15.	10211EE304	Control and Instrumentation Lab	0	0	2	1
16.	10211EE305	Microprocessor and Microcontrollers Lab	0	0	2	1
17.	10211EE306	Analog and Digital Electronics Lab	0	0	2	1
18.	10211EE307	Power Electronics Lab	0	0	2	1
19.	10211EE308	Power System Simulation Lab	0	0	2	1
		TOTAL				48

Programme Core

THEORY COURSES

COURSE CODE:	
10211EE101	

COURSE TITLE: CIRCUIT ANALYSIS

L	Т	Ρ	С
3	1	0	4

COURSE CATEGORY: Programme Core

PREAMBLE: This course aims to develop the necessary fundamentals for Electrical and Electronics engineers to analyze and solve a simple circuit involving DC and AC by making use of network laws and theorems. This course also provides a basic and comprehensive knowledge of circuits involving three phase, resonance, coupled and transients which an electrical engineer will come across in many applications and provide their solution.

PREREQUISITE COURSES: Electronics and Measurement Engineering

RELATED COURSES: Linear Integrated Circuits

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Understand the significance of the basic terminologies in electrical circuits and relation between the electrical quantities of R, L and C.
- Be proficient in handling basic laws and theorems in solving circuits.
- Be familiar with network topology and two port networks.
- Understand coupled and three phase circuits.
- Analyse the effect of transients and resonance.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.				Cou	irse Ou	tcome	S				on r	-	evel (Ba Bloom omy)		
C01		Explain the basic laws and mesh and nodal analysis of DC and AC circuits										К2			
CO2	Apply	Apply network theorems for DC and AC circuits									К3				
CO3	Build circui	the net it	twork ۽	graph a	ind net	work p	arame	ters fo	r a give	n		К3			
CO4	Solve	couple	d and	three p	hase c	ircuits						К3			
CO5	Ident	ify circu	uits inv	olving	transie	nts and	d reson	ance				К3			
CORREL		I OF CO	s WITH	H POs A	AND PS	Os									
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	Н	Н	Н	М	L						L	L	Н	L	
CO2	Н	Н	Н	М	L						L	L	Н	L	
CO3	Н	Н	Н	М	L						L	L	Н	L	
CO4	Н	Н	Н	М	L						L	L	Н	L	
CO5	Н	Н	Н	М	L						L	L	Н	L	

	E CONTENT:	
UNIT I	BASIC CIRCUIT ANALYSIS	12
	of circuit elements – types of electric circuits, types of voltage and current source, Ki 1esh current and Node voltage analysis for DC and AC circuits, super mesh and super	
	NETWORK THEOREMS	12
• •	osition theorem - Thevenin's theorem - Norton's theorem - Maximum power n - Reciprocity theorem.	transfe
UNIT II	I NETWORK TOPOLOGY AND TWO PORT NETWORKS	12
	k topology, Incidence matrix, Tie-set matrix, Cut-set matrix, Dual networks - T k, Impedance Parameter, Admittance Parameter, Transmission line.	wo por
	COUPLED AND THREE PHASE CIRCUITS	12
tuned c	d Mutual inductance - Coefficient of coupling-Analysis of coupled circuits - Analysis ircuits, Solution of circuits with balanced and unbalanced loads - Power measuremer eter method.	-
	CIRCUIT TRANSIENTS AND RESONANCE	12
	nt response of RL, RC and RLC circuit using Laplace transform, Series and parallel rest factor for series and parallel resonance circuit, bandwidth and resonant filters.	sonance
	TOTAL: 60 I	PERIOD
ТЕХТВС	TOTAL: 60 I	PERIOD
	TOTAL: 60 I	
	TOTAL: 60 I DOKS: William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits A	nalysis'
1. 2.	TOTAL: 60 I DOKS: William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits A Tata McGraw Hill publishers, 6 th edition, New Delhi, 2003. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Tata McG	nalysis"
1. 2. REFERE	TOTAL: 60 I DOKS: William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits A Tata McGraw Hill publishers, 6 th edition, New Delhi, 2003. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Tata McG New Delhi, 2001.	nalysis" iraw-Hil
1. 2. REFERE 1.	TOTAL: 60 I DOKS: William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits A Tata McGraw Hill publishers, 6 th edition, New Delhi, 2003. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Tata McG New Delhi, 2001. NCE BOOKS:	inalysis' iraw-Hil 96.
1. 2. REFERE 1. 2.	TOTAL: 60 I OOKS: William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits A Tata McGraw Hill publishers, 6 th edition, New Delhi, 2003. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Tata McG New Delhi, 2001. NCE BOOKS: Paranjothi SR, "Electric Circuits Analysis," New Age International Ltd., New Delhi, 199 Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthes	nalysis" Traw-Hil 96. is", Tat
1. 2. REFERE 1. 2.	TOTAL: 60 I OOKS: William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits A Tata McGraw Hill publishers, 6 th edition, New Delhi, 2003. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Tata McG New Delhi, 2001. NCE BOOKS: Paranjothi SR, "Electric Circuits Analysis," New Age International Ltd., New Delhi, 199 Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthes McGraw Hill, 2007. Chakrabati A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, Ne	inalysis" iraw-Hil 96. is", Tat

	RSE CODE:		C	OURSE TI	TLE:		L	Т	Р	C
102	11EE102	DCI	MACHIN	NES & TR	ANSFORM	IERS	3	0	0	3
COURSE	CATEGORY: Pr	ogramme Co	re							
and mo applicati	BLE: This course tors), Transfor ons to engine problem solvi	mers and thering, and r	heir te: esearch	sting me n areas; i	thods, ei introduce	nphasizin students	g their to cog	inter-re nitive l	elations earning	s an
PREREQ	UISITE COURSE	S: Nil								
RELATED	COURSES: AG	C Machines, E	lectrica	l Machine	e Design					
COURSE	EDUCATIONA	OBJECTIVES	:							
he obje	ctives of the co	ourse are to,								
•	Jnderstand th	ne fundamer	ntals of	frotating	gelectrica	al machin	es.			
•	Provide the bas	sic concept of	^F DC ma	chines an	d Transfo	rmers.				
•	Diagnose the c	ondition of D	C machi	ines and T	Fransform	ers.				
	OUTCOMES:									
CO Nos	n the successfu	Cou	rse Out	comes			Le do	vel of lo main (B vised B taxono	ased o loom's omy)	n
со		Cou	rse Out	comes	udents w magnetic	energy	Le do	main (B vised B	ased o loom's omy)	n
CO Nos	Elaborate conversion.	Cou	rse Out e le of	comes electro	magnetic	energy	Le do	main (B vised B taxonc	ased o loom's omy)	n
CO Nos	Elaborate conversion. Explain the p	Cou he principl	r se Out e le of characte	comes electro eristics of	magnetic DC Gener	energy ators.	Le do	main (B vised B taxonc K2	ased o loom's omy)	n
CO Nos CO1 CO2	Elaborate conversion. Explain the p	Court the principle erformance of performance equivalent of methods	rse Outo	comes electro eristics of teristics c of transfo	magnetic DC Gener of DC Mot ormers an	energy ators. ors. d Realize	Le do	main (B vised B taxonc K2 K2	ased o loom's omy)	n

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	н		L			L				L	L	М	L
CO2	н	Н		М							L	М	Н	L
CO3	н	Н		М							L	М	Н	L
CO4	Н	н		М							L	М	н	L
CO5	Н	Н	L	М							L	М	Н	L

UNIT I	BASIC CONCEPTS OF ROTATING MACHINES	9			
Principles of electromechanical energy conversion – Force and Torque equations in magnetic fields – Energy and Force in single and multiple excited systems – Concept of Co-energy – MMF of distributed windings – Rotating magnetic field –Torque in wound rotor machine.UNIT IIDC GENERATORS9Constructional details – Principle of operation – Armature windings – lap and wave windings – Simplex and Multiplex windings – emf equation – Methods of excitation – Types – Characteristics - Armature Reaction – Compensating winding – Commutation – methods of improving CommutationUNIT IIIDC MOTORS9Principle of operation – Back emf and torque equation – Types - Characteristics and application – starting of dc motors – Types of starters – Speed control of dc shunt and series motors – Testing of motors (Swinburne's and Hopkinson's test).9UNIT IVSINGLE PHASE TRANSFORMERS9Construction- Principle of operation – emf equation- Transformation ratio - Transformer on no-load					
UNIT II	DC GENERATORS	9			
Constructional details – Principle of operation – Armature windings – lap and wave windings – Simplex and Multiplex windings – emf equation – Methods of excitation – Types – Characteristics - Armature Reaction – Compensating winding – Commutation – methods of improving CommutationUNIT IIIDC MOTORS9Principle of operation – Back emf and torque equation – Types - Characteristics and application – starting of dc motors – Types of starters – Speed control of dc shunt and series motors – Testing of motors (Swinburne's and Hopkinson's test).9UNIT IVSINGLE PHASE TRANSFORMERS9Construction- Principle of operation - emf equation- Transformation ratio - Transformer on no-load - Parameters referred to HV/LV windings - Equivalent circuit - Transformer on load- Regulation -					
UNIT III	DC MOTORS	9			
starting o	f dc motors – Types of starters – Speed control of dc shunt and se				
UNIT IV	SINGLE PHASE TRANSFORMERS	9			
	ters referred to HV/LV windings - Equivalent circuit - Transforme	er on load- Regulation			
Losses an Sumpner'	ters referred to HV/LV windings - Equivalent circuit - Transformed efficiency of transformers - testing of transformers: open circuits test.	er on load- Regulation			
Losses an Sumpner' UNIT V Construct connectio Transform	ters referred to HV/LV windings - Equivalent circuit - Transformed defficiency of transformers - testing of transformers: open circuited and the set of th	er on load- Regulation it and short circuit tests 9 connection, open delta rmers, Load Sharing or anging of transformers			
Losses an Sumpner' UNIT V Construct connectio Transform	ters referred to HV/LV windings - Equivalent circuit - Transformed d efficiency of transformers - testing of transformers: open circui s test. THREE PHASE TRANSFORMERS ion, types of connection and their comparative features, Scott on, tertiary winding, Parallel operation of three-phase transformer. Tap changing transformers – No load and on load tap cha	er on load- Regulation it and short circuit tests 9 connection, open delta rmers, Load Sharing or anging of transformers			
Losses an Sumpner' UNIT V Construct connectio Transform	ters referred to HV/LV windings - Equivalent circuit - Transformed d efficiency of transformers - testing of transformers: open circuits test. THREE PHASE TRANSFORMERS ion, types of connection and their comparative features, Scotton, tertiary winding, Parallel operation of three-phase transformer. Tap changing transformers – No load and on load tap chaft transformers - All day efficiency. Autotransformers - Saving of co	er on load- Regulation it and short circuit tests 9 connection, open delta rmers, Load Sharing o anging of transformers pper, applications.			
Losses an Sumpner' UNIT V Construct connectio Transform Cooling of TEXTBOO 1. A.	ters referred to HV/LV windings - Equivalent circuit - Transformed d efficiency of transformers - testing of transformers: open circuits test. THREE PHASE TRANSFORMERS ion, types of connection and their comparative features, Scotton, tertiary winding, Parallel operation of three-phase transformer. Tap changing transformers – No load and on load tap chaft transformers - All day efficiency. Autotransformers - Saving of co	er on load- Regulation it and short circuit tests 9 connection, open delta rmers, Load Sharing o anging of transformers pper, applications. TOTAL: 45 PERIODS			
Losses an Sumpner' UNIT V Construct connectio Transform Cooling of TEXTBOO 1. A. Pu	ters referred to HV/LV windings - Equivalent circuit - Transformed d efficiency of transformers - testing of transformers: open circuits s test. THREE PHASE TRANSFORMERS ion, types of connection and their comparative features, Scott on, tertiary winding, Parallel operation of three-phase transformer. Tap changing transformers – No load and on load tap cha f transformers - All day efficiency. Autotransformers - Saving of con KS: .E.Fitzgerald, Charles Kingsley, Stephen.D.Umans, "Electric Machine	er on load- Regulation it and short circuit tests 9 connection, open delta rmers, Load Sharing o anging of transformers pper, applications. TOTAL: 45 PERIODS			
Losses an Sumpner' UNIT V Construct connectio Transform Cooling of TEXTBOO 1. A. Pt 2. D	ters referred to HV/LV windings - Equivalent circuit - Transformed d efficiency of transformers - testing of transformers: open circuits s test. THREE PHASE TRANSFORMERS ion, types of connection and their comparative features, Scott on, tertiary winding, Parallel operation of three-phase transformer. Tap changing transformers – No load and on load tap cha f transformers - All day efficiency. Autotransformers - Saving of co KS: .E.Fitzgerald, Charles Kingsley, Stephen.D.Umans, "Electric Machina ublishing Company Ltd, 2003.	er on load- Regulation it and short circuit tests 9 connection, open delta rmers, Load Sharing o anging of transformers pper, applications. TOTAL: 45 PERIODS			
Losses an Sumpner' UNIT V Construct connectio Transform Cooling of TEXTBOO 1. A Pu 2. D REFERENC	ters referred to HV/LV windings - Equivalent circuit - Transformed d efficiency of transformers - testing of transformers: open circuits test. THREE PHASE TRANSFORMERS ion, types of connection and their comparative features, Scott on, tertiary winding, Parallel operation of three-phase transformers. Tap changing transformers – No load and on load tap cha f transformers - All day efficiency. Autotransformers - Saving of co KS: .E.Fitzgerald, Charles Kingsley, Stephen.D.Umans, "Electric Machi ublishing Company Ltd, 2003. r.P.S.Bimbhra, "Electrical Machinery", Khanna Publishers, 7 th Ediso	er on load- Regulation it and short circuit tests 9 connection, open delta rmers, Load Sharing o anging of transformers pper, applications. TOTAL: 45 PERIODS inery" Tata McGraw Hill on, 2013			
Losses an Sumpner' UNIT V Construct connectio Transform Cooling of TEXTBOO 1. A Pu 2. D REFERENC 1. P. EC 2. D	ters referred to HV/LV windings - Equivalent circuit - Transformed d efficiency of transformers - testing of transformers: open circuits s test. THREE PHASE TRANSFORMERS ion, types of connection and their comparative features, Scotten, tertiary winding, Parallel operation of three-phase transformer. Tap changing transformers – No load and on load tap chaft transformers - All day efficiency. Autotransformers - Saving of context of transformers - All day efficiency. Autotransformers - Saving of context of transformers - All day efficiency. Autotransformers - Saving of context of transformers - Saving of context of the stransformers - Saving of context of the stransformers - Saving of context of transformers - Saving of context of the stransformers - Saving of context of transformers - Saving of context of the stransformers - Savin	er on load- Regulation it and short circuit tests 9 connection, open delta rmers, Load Sharing o anging of transformers pper, applications. TOTAL: 45 PERIODS inery" Tata McGraw Hil on, 2013 ohn Wiley and Sons, 2 ⁿ			

	IRSE CODE:	COURSE TITLE:	L	Т	Р	C
	211EE103	AC MACHINES	3	0	0	3
OURSE	CATEGORY: Progra	imme Core				
pecial N	lachines, which m	ovides knowledge on various types of AC Gener ould the students in relation to the performanc s and their applications.				
REREQL	JISITE COURSES: D	C Machines & Transformers				
ELATED	COURSES: Electri	cal Machine Design, Solid State Drives				
OURSE	EDUCATIONAL OB	JECTIVES:				
he objec	ctives of the course	e are to,				
• A	analyse the perform	nance characteristics of Synchronous machines				
• E	xplain the perform	ance characteristics of Induction machines.				
• S	ummarize the con	cept of Single-Phase Induction Motors and Specia	l Mac	hines.		
	OUTCOMES:	npletion of the course, students will be able to:				
Opon		inpletion of the course, students will be able to.			f learnii	20
CO No.		Course Outcomes		domain revised	(Based Bloom nomy)	on
CO1		perating principle, methods of determining e phase alternator	3		К2	
CO2	Analyse the chara	acteristics of synchronous motors			К4	
	Explain the per- Motor	formance characteristics of 3 phase Induction	1		К2	
CO3	A	ol strategies of 3 phase Induction Motor			К4	
CO3 CO4	Analyze the contr					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н		L		L						L	Н	L
CO2	Н	Н		М									Н	L
СОЗ	Н	Н	М	М			L						Н	L
CO4	Н	Н		М									Н	L
CO5	Н	М		М		М						L	Н	L

UNIT I	SYNCHRONOUS GENERATOR	9
Voltage regula Synchronizing	details – Types of rotors – emf equation – Synchronous reactance – Arm tion – EMF, MMF and ZPF methods – Synchronizing and parall torque - Change of excitation and mechanical input – Two rea of direct and quadrature axis synchronous reactance using slip test - Cap	lel operation – action theory –
UNIT II	SYNCHRONOUS MOTOR	9
power develop	eration – Torque equation – infinite bus – V and inverted V curves – F ed equations – Starting methods – Current loci for constant power onstant power developed.	
UNIT III	THREE PHASE INDUCTION MOTOR	9
Equivalent circu Load test - No	etic field-Constructional details – Types of rotors – Principle of ope it – Slip-torque characteristics - Condition for maximum torque – Losses load and blocked rotor tests - Circle diagram – Separation of no-load duction generator – Synchronous induction motor.	and efficiency -
UNIT IV	STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR	9
Need for startin		
	ng – Types of starters –DOL, star-delta, autotransformer and rotor resis - Change of voltage, frequency, number of poles and slip – Cascaded c scheme.	
Speed control -	- Change of voltage, frequency, number of poles and slip – Cascaded c	
Speed control - power recovery UNIT V Constructional Equivalent circu	Change of voltage, frequency, number of poles and slip – Cascaded c scheme. SINGLE PHASE INDUCTION MOTORS details of single-phase induction motor – Double revolving field theory it – No load and blocked rotor test – Performance analysis – Starting me motors - Shaded pole induction motor, reluctance motor, repulsion metals	onnection – Slip 9 and operation - ethods of single
Speed control – power recovery UNIT V Constructional Equivalent circu phase induction	Change of voltage, frequency, number of poles and slip – Cascaded c scheme. SINGLE PHASE INDUCTION MOTORS details of single-phase induction motor – Double revolving field theory it – No load and blocked rotor test – Performance analysis – Starting me motors - Shaded pole induction motor, reluctance motor, repulsion m series motor.	onnection – Slip 9 and operation - ethods of single
Speed control – power recovery UNIT V Constructional Equivalent circu phase induction	Change of voltage, frequency, number of poles and slip – Cascaded c scheme. SINGLE PHASE INDUCTION MOTORS details of single-phase induction motor – Double revolving field theory it – No load and blocked rotor test – Performance analysis – Starting me motors - Shaded pole induction motor, reluctance motor, repulsion m series motor.	onnection – Slip 9 and operation - ethods of single notor, hysteresis
Speed control – power recovery UNIT V Constructional Equivalent circu phase inductior motor and AC s TEXTBOOKS: 1. Dr. P.S.	Change of voltage, frequency, number of poles and slip – Cascaded c scheme. SINGLE PHASE INDUCTION MOTORS details of single-phase induction motor – Double revolving field theory it – No load and blocked rotor test – Performance analysis – Starting me motors - Shaded pole induction motor, reluctance motor, repulsion m series motor.	onnection – Slip 9 and operation - ethods of single notor, hysteresis
Speed control - power recovery UNIT V Constructional Equivalent circu phase inductior motor and AC s TEXTBOOKS: 1. Dr. P.S. 2. D.P. Kot	- Change of voltage, frequency, number of poles and slip – Cascaded c scheme. SINGLE PHASE INDUCTION MOTORS details of single-phase induction motor – Double revolving field theory it – No load and blocked rotor test – Performance analysis – Starting motors - Shaded pole induction motor, reluctance motor, repulsion meries motor. TOT Bhimbra, 'Electrical Machinery', Khanna Publications, 7 th Edition, 2007 thari and I.J. Nagrath, 'Electric Machines', Tata McGraw Hill Publishing Co	onnection – Slip 9 and operation - ethods of single notor, hysteresis
Speed control - power recovery UNIT V Constructional E Equivalent circu phase inductior motor and AC s TEXTBOOKS: 1. Dr. P.S. 2. D.P. Kot 2010 REFERENCE BOO 1. A.E. Fitz	- Change of voltage, frequency, number of poles and slip – Cascaded c scheme. SINGLE PHASE INDUCTION MOTORS details of single-phase induction motor – Double revolving field theory it – No load and blocked rotor test – Performance analysis – Starting motors - Shaded pole induction motor, reluctance motor, repulsion meries motor. TOT Bhimbra, 'Electrical Machinery', Khanna Publications, 7 th Edition, 2007 thari and I.J. Nagrath, 'Electric Machines', Tata McGraw Hill Publishing Co	onnection – Slip 9 and operation - ethods of single notor, hysteresis FAL: 45 PERIODS
Speed control - power recovery UNIT V Constructional Equivalent circu phase inductior motor and AC s TEXTBOOKS: 1. Dr. P.S. 2. D.P. Kot 2010 REFERENCE BOO 1. A.E. Fitz Publish	Change of voltage, frequency, number of poles and slip – Cascaded c scheme. SINGLE PHASE INDUCTION MOTORS details of single-phase induction motor – Double revolving field theory it – No load and blocked rotor test – Performance analysis – Starting mo motors - Shaded pole induction motor, reluctance motor, repulsion m eries motor. TOT Bhimbra, 'Electrical Machinery', Khanna Publications, 7 th Edition, 2007 chari and I.J. Nagrath, 'Electric Machines', Tata McGraw Hill Publishing Co DKS: gerald, Charles Kingsley, Stephen.D.Umans, 'Electric Machinery', Tata M	onnection – Slip 9 and operation - ethods of single notor, hysteresis FAL: 45 PERIODS ompany Ltd, IcGraw Hill
Speed control - power recovery UNIT V Constructional E Equivalent circu phase induction motor and AC s TEXTBOOKS: 1. Dr. P.S. 2. D.P. Kot 2010 REFERENCE BOO 1. A.E. Fitz Publishi 2. B. L. Th 2002.	 Change of voltage, frequency, number of poles and slip – Cascaded c scheme. SINGLE PHASE INDUCTION MOTORS details of single-phase induction motor – Double revolving field theory it – No load and blocked rotor test – Performance analysis – Starting me motors - Shaded pole induction motor, reluctance motor, repulsion meries motor. Bhimbra, 'Electrical Machinery', Khanna Publications, 7th Edition, 2007 chari and I.J. Nagrath, 'Electric Machines', Tata McGraw Hill Publishing Company Ltd, 2002. 	onnection – Slip 9 and operation - ethods of single notor, hysteresis FAL: 45 PERIODS ompany Ltd, IcGraw Hill
Speed control - power recovery UNIT V Constructional Equivalent circu phase inductior motor and AC s TEXTBOOKS: 1. Dr. P.S. 2. D.P. Kot 2010 REFERENCE BOO 1. A.E. Fitz Publish 2. B. L. Th 2002. 3. K. Muru 4. P.S. Bhi	Change of voltage, frequency, number of poles and slip – Cascaded c scheme. SINGLE PHASE INDUCTION MOTORS details of single-phase induction motor – Double revolving field theory it – No load and blocked rotor test – Performance analysis – Starting me motors - Shaded pole induction motor, reluctance motor, repulsion meries motor. TOT Bhimbra, 'Electrical Machinery', Khanna Publications, 7 th Edition, 2007 chari and I.J. Nagrath, 'Electric Machines', Tata McGraw Hill Publishing Company Ltd, 2002. gerald, Charles Kingsley, Stephen.D.Umans, 'Electric Machinery', Tata MacGraphic Kingsley, Stephen.D.Umans, 'Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K. Theraja, " A Text Book of Electrical Technology'', S. Charla and A.K.	onnection – Sli 9 and operation ethods of single notor, hysteresi FAL: 45 PERIODS ompany Ltd, IcGraw Hill

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10211EE104	DIGITAL ELECTRONICS	3	0	0	3
COURSE CATEGORY: Pr	ogramme Core				

PREAMBLE: The primary aim of this course is to understand the fundamentals of digital logic circuit design and gain experience. This course includes fundamentals of Boolean algebra, combinational circuits, sequential circuits and applications of digital electronics.

PREREQUISITE COURSES: Basic Electronics and Measurement Engineering

RELATED COURSES: Microprocessor and Microcontroller

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Familiar with number systems and Boolean algebra.
- Understand and explain sequential digital logic circuits.
- Design and implement combination logic circuits.
- Study the applications of digital electronics.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Understand the fundamentals of digital electronics.	К2
CO2	Develop combinational logic circuits for the given logical expressions.	К4
CO3	Understand the basic concepts of Flip-flops, Registers and Counters.	К2
CO4	Develop synchronous and asynchronous sequential circuits.	К4
CO5	Explain the applications of digital electronics.	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н		М								М	Н	М
CO2	Н	Н	Н	Н								М	Н	М
CO3	Н	Н	Н	Н								М	Н	М
CO4	Н	Н	Н	Н								М	Н	М
CO5	М	L				М						L	L	L

UNIT I	DIGITAL FUNDAMENTALS	9
binary ari	nd Digital Signals, introduction to Digital electronics, Number So ithmetic and logic operation, 1's complement and 2's complement, c ion to Boolean algebra-Boolean postulates and laws – De-Morga Boolean expression – Minimization of Boolean expressions.	code conversion.
UNIT II	COMBINATIONAL CIRCUITS	9
minimiza	tional logic representation of logic functions – SOP and POS forms, k tion using K-maps- simplification and implementation of combinatic lexers – code converters, adders, subtractors.	
UNIT III	SEQUENTIAL LOGIC CIRCUITS	9
	and T flip-flops – level triggering and edge triggering – countern nous and synchronous type – Modulo counters – Shift registers – Ri	-
UNIT IV	SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS	9
design us Asynchro	ous sequential circuits: State table and excitation tables - state of ing Mealy and Moore model, state reduction and state assignment nous sequential circuits: Transition table, flow table – race aroun nalysis procedure.	
UNIT V	APPLICATIONS OF DIGITAL ELECTRONICS	9
•	ting displays - Frequency counters - Time measurements - using to a span adjust, zero shift, testing - microprocessor compatible A/D co	
		TOTAL: 45 PERIODS
TEXT BO	DKS:	
	 Morris Mano, Digital Design, 3rd Edition, Prentice Hall of India ducation (Singapore) Pvt. Ltd., New Delhi, 2003. 	a Pvt. Ltd., 2003 / Pearsor
2. C	onald .P.Leach, Digital principles and applications,7th Edition, McG	raw-Hill ,2012
REFEREN	CE BOOKS:	
2. т	ohn F.Wakerly, Digital Design, Fourth Edition, Pearson/PHI, 2006. homas L. Floyd, Digital Fundamentals, 8th Edition, Pearson Educ bonald D.Givone, Digital Principles and Design, TMH.	ation Inc, New Delhi, 2003
	Villiam H. Gothmann, Digital Electronics, 2nd Edition, PHI, 1982. ttps://onlinecourses.nptel.ac.in/noc22 ee110/preview	

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10211EE105	LINEAR CONTROL SYSTEMS	2	1	0	3
COURSE CATEGORY: Prog	ramme Core				

PREAMBLE: This Course aims to provide knowledge in mathematical modelling with state space and transfer function models, time and frequency response analysis and stability studies of the system.

PREREQUISITE COURSES: Circuit Analysis

RELATED COURSES: Digital Control Systems

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Acquire knowledge in mathematical modelling of various systems.
- Perform time and frequency domain analysis and the check the stability.
- Apply controllers and compensators design for the system based on given specifications.
- Develop state space model from transfer function.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
C01	Develop mathematical Model for electrical, mechanical and Electro mechanical systems and Obtain transfer function using	К2
	block diagram algebra and mason's gain formula	
CO2	Calculate various time domain specifications and describe their significance	К2
CO3	Analyze the Performance of the given System using frequency response plots and root locus	КЗ
CO4	Determine the stability of the given system using time and frequency domain approach	КЗ
CO5	Identify suitable compensator based on given specifications and explain the concept of P, PI and PID Controllers	КЗ
CO6	Develop state space models from transfer functions and vice versa	КЗ

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	н	Н	М		L						L	М	Н	Μ
CO2	н	Н	L		М							М	Н	Μ
CO3	Н	Н	Н	Μ	Μ						М	М	Н	М
CO4	Н	Н	М									М	Н	М
CO5	Н	Н	М	Μ	Μ						М	М	Н	М
CO6	Н	Н	М								L	М	Н	М

	UNIT I	TRANSFER FUNCTION MODEL OF SYSTEMS	9
Transfe Analog	er Function - Tra ies between elec	systems - open loop and closed loop systems - Mathematical model nsfer function model of electrical, mechanical and electromechanic ctrical and mechanical systems - Block diagram algebra - Transfer fu n and Signal flow graph	al systems
	UNIT II	TIME RESPONSE ANALYSIS	9
secon	d order systems	l order of system - Standard test signals - Time response of firs - Time response specifications - Static error coefficients and s o P, PI and PID Controllers.	
	UNIT III	FREQUENCY RESPONSE ANALYSIS	9
Bode p	olots - Frequency	ncy response - Correlation between Time and frequency response - response specifications - Basics of lead, lag and lead-lag compensat sators using Bode plots.	-
	UNIT IV	SYSTEM STABILITY ANALYSIS	9
	lity analysis in fre	Hurwitz criterion - Root locus concept - rules for constructing root lo equency domain: Nyquist stability criterion - Relative stability analysis	5
	UNIT V	STATE SPACE MODEL OF SYSTEMS	9
Introdu	•	pace – State Equations – Conversion of State space to transfer funct	ion and vice
versa		n matrix - Solution of state equation through Laplace transforr ervability - Gilbert's test - Kalman's test.	n method
versa		ervability - Gilbert's test - Kalman's test.	n method
versa	llability and Obse	ervability - Gilbert's test - Kalman's test.	
versa Contro TEXT B	BOOKS:	ervability - Gilbert's test - Kalman's test.	45 PERIODS
versa Contro TEXT B	OOKS:	ervability - Gilbert's test - Kalman's test. TOTAL:	45 PERIODS
versa Contro TEXT B 1. 2.	BOOKS: Norman.S.Nise Richard.C.Dorf	ervability - Gilbert's test - Kalman's test. TOTAL: 'Control Systems Engineering', Wiley Student Edition, 5 th Edition 20	45 PERIODS
versa Contro TEXT B 1. 2.	BOOKS: Norman.S.Nise Richard.C.Dorf 2011. ENCE BOOKS:	ervability - Gilbert's test - Kalman's test. TOTAL: 'Control Systems Engineering', Wiley Student Edition, 5 th Edition 20	45 PERIODS
versa Contro TEXT B 1. 2. REFERI	BOOKS: Norman.S.Nise Richard.C.Dorf 2011. ENCE BOOKS: Kaitshiko Ogata John J Azzo a	rvability - Gilbert's test - Kalman's test. TOTAL: 'Control Systems Engineering' , Wiley Student Edition, 5 th Edition 20 and Robert.H.Bishop 'Modern Control Systems', Pearson Education,	45 PERIODS 12 11 th Edition
versa Contro TEXT B 1. 2. REFERI 1.	OOKS: Norman.S.Nise Richard.C.Dorf 2011. ENCE BOOKS: Kaitshiko Ogata John J Azzo ai MATLAB", Marc	ervability - Gilbert's test - Kalman's test. TOTAL: 'Control Systems Engineering' , Wiley Student Edition, 5 th Edition 20 and Robert.H.Bishop 'Modern Control Systems', Pearson Education, "Modern Control Engineering" Pearson Education" 2010 Edition. Ind Constantine H.Houpis "Linear Control Systems analysis and 10	45 PERIOD 12 11 th Edition Design with

COL	JRSE CODE:	COURSE TITLE:	L	Т	Р	С
	211EE106	MEASUREMENTS AND INSTRUMENTATION	2	0	0	2
COURSE	CATEGORY: Progr	amme Core			1 1	
	LE: To provide ments techniques	adequate knowledge in electrical and	ectronic	instr	uments	and
PREREQU	JISITE COURSES:	Basic Electronics and Measurement Engineering				
RELEVAN	IT COURSES: Line	ar Control Systems				
The object L L C C COURSE	Understand analog Compare AC and D Elaborate discussio Study different tra OUTCOMES:	al instrumentation system, error and calibration g and digital techniques to measure voltage, curre C bridges. on about storage & display devices. nsducers and data acquisition system	nt, ener	gy and	power	
CO Nos.		mpletion of the course, students will be able to: Course Outcomes	on r	-	evel (Ba Bloom' omy)	
CO1	Explain about ca	libration, classify errors and standards		К2	2	
CO2	Illustrate types	of electrical and electronic instruments		K2	2	
CO3	Explain about ty	pes of bridges required for measurements		К2	2	
CO4	Explain about ty	pes of display measurement devices		К2	2	
CO5	Explain the t conversion	ypes of transducers required for energy		K2	2	

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н										L	Н	L
CO2	Н	Н										L	Н	L
CO3	Н	Н										L	Н	L
CO4	Н	Н										L	Н	L
CO5	Н	Н										L	Н	L
<u>I</u>	1	1			1	1	1		I	1				

	ONTENT:	
UNIT I	INTRODUCTION	6
	elements of an instrument – static and dynamic characteristics - evaluation of measurement data – standards and calibration.	- errors in measurement –
UNIT II	ELECTRICAL AND ELECTRONICS INSTRUMENTS	6
-	nd types of analog and digital voltmeters, ammeters, multimeter s and energy meters -instrument transformers – instruments for r	
UNIT III	DC AND AC BRIDGES	6
-	: Wheatstone bridge, Kelvin's Bridge. AC bridges: Maxwell's bri Anderson bridge.	dg, Schering bridge, Weir
UNIT IV	STORAGE AND DISPLAY DEVICES	6
•	disk and tape – recorders, CRT display, digital CRO, LED, LCD & c inters and display devices.	lot matrix display.Study o
UNIT V	TRANSDUCERS AND DATA ACQUISITION SYSTEMS	6
	on of transducers – selection of transducers – resistive, capacitive	& inductive transducers -
•	re transducers: thermistor, thermocouple - LVDT, pressure trai ric – elements of data acquisition system.	
•		nsducers– strain gauges -
•	ric – elements of data acquisition system.	nsducers– strain gauges -
Piezo elect TEXT BOO 1. E.	ric – elements of data acquisition system.	nsducers– strain gauges - TOTAL: 30 PERIODS
Piezo elect TEXT BOO 1. E.(co 2. A.	ric – elements of data acquisition system. (S: D. Doebelin, 'Measurement Systems – Application and Design', Ta	nsducers– strain gauges - TOTAL: 30 PERIODS nta McGraw Hill publishing
Piezo elect TEXT BOO 1. E.(co 2. A.	ric – elements of data acquisition system. (S: D. Doebelin, 'Measurement Systems – Application and Design', Tampany, 2003. K. Sawhney, 'A Course in Electrical & Electronic Measurem anpatRai and Co, 2004.	nsducers– strain gauges - TOTAL: 30 PERIODS nta McGraw Hill publishing
Piezo elect TEXT BOO 1. E.(co 2. A. Dł REFERENC	ric – elements of data acquisition system. (S: D. Doebelin, 'Measurement Systems – Application and Design', Tampany, 2003. K. Sawhney, 'A Course in Electrical & Electronic Measurem anpatRai and Co, 2004.	nsducers– strain gauges - TOTAL: 30 PERIODS ata McGraw Hill publishing ents & Instrumentation'
Piezo elect TEXT BOO 1. E.C CO 2. A. DH REFERENC 1. D.	ric – elements of data acquisition system. (S: D. Doebelin, 'Measurement Systems – Application and Design', Tampany, 2003. (C. Sawhney, 'A Course in Electrical & Electronic Measurem anpatRai and Co, 2004. E BOOKS:	nsducers– strain gauges - TOTAL: 30 PERIODS ata McGraw Hill publishing ents & Instrumentation'
Piezo elect TEXT BOO 1. E.0 co 2. A. Dr REFERENC 1. D. 2. H.	ric – elements of data acquisition system. (S: D. Doebelin, 'Measurement Systems – Application and Design', Tampany, 2003. (C. Sawhney, 'A Course in Electrical & Electronic Measurem anpatRai and Co, 2004. E BOOKS: /.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of I	nsducers– strain gauges - TOTAL: 30 PERIODS ata McGraw Hill publishing ents & Instrumentation'
Piezo elect TEXT BOO 1. E.C co 2. A. Dr REFERENC 1. D. 3. M 4. J.	ric – elements of data acquisition system. (S: D. Doebelin, 'Measurement Systems – Application and Design', Tampany, 2003. C. Sawhney, 'A Course in Electrical & Electronic Measurem anpatRai and Co, 2004. E BOOKS: /.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of I S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 1995.	nsducers- strain gauges - TOTAL: 30 PERIODS ata McGraw Hill publishing ents & Instrumentation' ndia Pvt Ltd, 2003. P) Ltd., Delhi, 2001.
Piezo elect TEXT BOO 1. E.C co 2. A. Dr REFERENC 1. D. 3. M 4. J. 20 5. Da	ric – elements of data acquisition system. (S:). Doebelin, 'Measurement Systems – Application and Design', Tampany, 2003. (C. Sawhney, 'A Course in Electrical & Electronic Measurem anpatRai and Co, 2004. E BOOKS: /.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of I S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 1995. artin Reissland, 'Electrical Measurements', New Age International (B. Gupta, 'A Course in Electronic and Electrical Measurements',	nsducers– strain gauges - TOTAL: 30 PERIODS ata McGraw Hill publishing ents & Instrumentation' ndia Pvt Ltd, 2003. P) Ltd., Delhi, 2001. S. K. Kataria& Sons, Delhi

	URSE CO					C	OURSE	TITLE:				L	Т	P (
10)211EE1	.07			TRAN	SMISS	ION AN	ID DIST	RIBUT	ION		3	0	0 3
OURS	E CATE	GORY:	Progra	amme	Core									
ines of perforr	1BLE: To f power mance o distribu	syster of insu	ms, mo	delling	of the	transr	nission	lines f	or com	puting	perfo	rmance	e parar	neter
PRERE	QUISITE	COUF	RSES: E	lectron	nagnet	ic field	s, Circu	it Anal	ysis					
RELATI	D COU	RSES:	Power	Syster	n Analy	/sis, Po	wer Sy	stem C	peratio	on & Co	ontrol			
COURS	E EDUC		IAL OB	JECTIV	ES:									
The ob	jectives	of the	cours	e are to	b :									
٠	Deterr	nine tl	ne sing	le and	three p	hase t	ransmi	ssion li	ne para	ameter	s.			
•	Obtair	the e	quivale		-			ion line	-			oltage	regula	tion
_	and ef		•		- l :	- - : .	f					_		
•	-		_		ndergr		-	verhea	d lines	and ins	sulator	s.		
•					-			butors						
				50 01 0 0					-					
	on the s			mpletio	on of th	ne cour	se, stu	dents v	vill be a	able to	:			
CO Nos.					ourse O						Know	ledge L revisec Taxon	Bloo	
CO1				nsmissi Imeters		model	s and s	olve fo	r its		КЗ			
CO2	base	d on d	•					nission gulatior				K	3	
	Ident	ency. ify the ators.	e perfo	rmance	e paran	neters	of over	head li	nes an	d		K	3	
CO3	Insul	acors.										K	2	
CO3 CO4	_		types	and ch	aracter	istics o	of unde	rgroun	d cable	es.		N.		
	Expla Choo	in the se the	type c		nd AC c			rgroun nd solve				K	3	
CO4 CO5	Expla Choo perfo	in the se the orman	type c ce para	of DC ai imeters	nd AC c s	listribu							3	
CO4 CO5	Expla Choo perfo	in the se the orman	type c ce para Ds WIT	of DC an imeters H POs /	nd AC c s AND P	listribu S Os	itors ar	nd solve	e for its	5	PO11	K:		PSO
CO4 CO5	Expla Choo perfo	in the se the orman	type c ce para	of DC ai imeters	nd AC c s	listribu					PO11	K:		PSO2
CO4 CO5 CORRE COs	Expla Choo perfo LATION PO1	orman orman OF CC	type o ce para Ds WIT PO3	of DC an imeters H POs /	nd AC c s AND P	listribu S Os	tors ar	nd solve	e for its	5		K: PO12	PSO1	
CO4 CO5 CORRE COs CO1	Expla Choo perfo LATION PO1 H	in the se the orman OF CC PO2 H	type of the para ce para Ds WIT PO3 M	of DC an imeters H POs /	nd AC c s AND P	listribu S Os	tors ar	nd solve	e for its	5	L	K: PO12 L	РSO1 Н	L
CO4 CO5 CORRE COs CO1 CO2	Expla Choo perfo LATION PO1 H H	in the ose the ormano OF CC PO2 H H	type c ce para Ds WIT PO3 M M	of DC an imeters H POs /	nd AC c s AND P	listribu S Os	PO7	nd solve	e for its	5	L	K: PO12 L	РSO1 Н	L

UNIT I	TRANSMISSION LINE PARAMETERS	9
inductan	ers of single and three phase transmission lines with single and double circ ce and capacitance of solid, stranded and bundled conductors, S etrical spacing and transposition - application of self and mutual GMD; sl	Symmetrical and
UNIT II	MODELLING AND PERFORMANCE OF TRANSMISSION LINES	9
attenuat	ition of lines - short line, medium line and long line - equivalent circuits, ion constant, phase constant, surge impedance; transmission efficier n, real and reactive power flow in lines- surge impedance loading- Ferranti	ncy and voltage
UNIT III	INSULATORS & MECHANICAL DESIGN OF LINES	9
Voltage	cal design of Overhead lines – Line supports – Overhead line insulators distribution in suspension insulators - string efficiency – Stress and Sag cal and ice - Formation of Corona - critical voltages - losses - effect on line perfo	culation – effect
UNIT IV	UNDERGROUND CABLES	9
•	son between overhead line and underground cable – Constructional fe	atures - Types o
	nsulation resistance - potential gradient - capacitance of single core and th of cables - Types of grading of cables.	nree core cables
		nree core cables
grading o UNIT V DC Distri	of cables - Types of grading of cables.	9
grading o UNIT V DC Distri one end AC Distri	of cables - Types of grading of cables. DISTRIBUTORS butors: Concentrated and distributed loads - Two wire distributor- radial d	9 istributor - fed a
grading o UNIT V DC Distri one end AC Distri	of cables - Types of grading of cables. DISTRIBUTORS butors: Concentrated and distributed loads - Two wire distributor- radial d - fed at both ends - Ring main feeder - Advantages - Three wire distributor. butors: Concentrated loads with power factor refers to load point - refer t ase three wire and three phase four wire distributors.	9 istributor - fed a
grading o UNIT V DC Distri one end AC Distri	of cables - Types of grading of cables. DISTRIBUTORS butors: Concentrated and distributed loads - Two wire distributor- radial d - fed at both ends - Ring main feeder - Advantages - Three wire distributor. butors: Concentrated loads with power factor refers to load point - refer t ase three wire and three phase four wire distributors. TO	9 istributor - fed a o common load
grading of UNIT V DC Distri one end AC Distri three ph TEXT BO	of cables - Types of grading of cables. DISTRIBUTORS butors: Concentrated and distributed loads - Two wire distributor- radial d - fed at both ends - Ring main feeder - Advantages - Three wire distributor. butors: Concentrated loads with power factor refers to load point - refer t ase three wire and three phase four wire distributors. TO	9 istributor - fed a o common load TAL: 45 PERIOD
grading of UNIT V DC Distri one end AC Distri three ph TEXT BO 1. N	of cables - Types of grading of cables. DISTRIBUTORS butors: Concentrated and distributed loads - Two wire distributor- radial d - fed at both ends - Ring main feeder - Advantages - Three wire distributor. butors: Concentrated loads with power factor refers to load point - refer t ase three wire and three phase four wire distributors. TO OKS:	9 istributor - fed a o common load ITAL: 45 PERIOD
grading of UNIT V DC Distri one end AC Distri three ph TEXT BO 1. \ 2. (of cables - Types of grading of cables. DISTRIBUTORS butors: Concentrated and distributed loads - Two wire distributor- radial d - fed at both ends - Ring main feeder - Advantages - Three wire distributor. butors: Concentrated loads with power factor refers to load point - refer t ase three wire and three phase four wire distributors. TO OKS: Wadhwa,C.L., 'Electrical power systems', New age International Pvt Ltd. publication	9 istributor - fed a o common load ITAL: 45 PERIOD
grading of UNIT V DC Distri one end AC Distri three ph TEXT BO 1. \ 2. (REFEREN	of cables - Types of grading of cables. DISTRIBUTORS butors: Concentrated and distributed loads - Two wire distributor- radial d - fed at both ends - Ring main feeder - Advantages - Three wire distributor. butors: Concentrated loads with power factor refers to load point - refer t ase three wire and three phase four wire distributors. TO OKS: Wadhwa,C.L., 'Electrical power systems', New age International Pvt Ltd. pub Gupta B.R., 'Power system Analysis & Design', Wheeler Publishing, 2006.	9 istributor - fed a o common load TAL: 45 PERIOD
grading of UNIT V DC Distri one end AC Distri three ph TEXT BO 1. \ 2. (REFEREN 1. (2.	of cables - Types of grading of cables. DISTRIBUTORS butors: Concentrated and distributed loads - Two wire distributor- radial d - fed at both ends - Ring main feeder - Advantages - Three wire distributor. butors: Concentrated loads with power factor refers to load point - refer t ase three wire and three phase four wire distributors. TO OKS: Wadhwa,C.L., 'Electrical power systems', New age International Pvt Ltd. pub Gupta B.R., 'Power system Analysis & Design', Wheeler Publishing, 2006. ICE BOOKS:	9 istributor - fed a o common load TAL: 45 PERIOD blishers,1995.
grading of UNIT V DC Distri one end AC Distri three ph TEXT BO 1. \ 2. (REFEREN 1. (2. F	of cables - Types of grading of cables. DISTRIBUTORS butors: Concentrated and distributed loads - Two wire distributor- radial d - fed at both ends - Ring main feeder - Advantages - Three wire distributor. butors: Concentrated loads with power factor refers to load point - refer t ase three wire and three phase four wire distributors. TO OKS: Wadhwa,C.L., 'Electrical power systems', New age International Pvt Ltd. public Gupta B.R., 'Power system Analysis & Design', Wheeler Publishing, 2006. ICE BOOKS: Cotton H., 'Transmission and distribution of electrical Energy', ELBS,1985. A. Chakrabarti ,P. V. Gupta , Soni M, Text Book on 'Power System Enging	9 istributor - fed a o common load TAL: 45 PERIOD Dishers,1995.

C	OURSI	E CODE:				COL	JRSE TI	TLE:			L	Т	Р	C
	10211	EE108			F	POWER	ELECT	RONICS	5		3	0	0	3
COURS	E CAT	EGORY:	Progra	mme C	Core									
the eff	icient	⁻ his cou convers rical out	sion, co	ontrol a	and cor	nditioni	ing of e	electric						
PRERE	QUISIT	E COUR	RSES: Ci	rcuit A	nalysis,	, Electro	onic Cir	cuits						
RELAT	ED COL	JRSES:	LED Lig	hting T	echnol	ogy, So	lid Stat	e Drive	S					
COURS	E EDU	CATION	IAL OB.	JECTIVI	ES:									
• • •	chara Unde Study Learn to un Know	an over acteristic rstand the op the dif derstan the pra	cs. the ope eratior ferent id the h	eration, n, switc modula narmon	, charac hing te ation te ic redu	cteristic chnique chnique chniqu	cs and p es and les of st nethods	perform basic to tepped s.	nance p opologi and pu	oarame es of D Ilse wid	ters of C-DC sv Ith mod	control witchin dulated	lled rec g regula inverte	tifiers. ators. ers and
	suppl	-												
		COMES succes			C . I									
CO Nos						Outco					do	evel of omain (evised taxon	Based Bloom	on
CO		xplain witching	•••	•		mi-con	ductor	device	es and	their				
CO	, с		the	operat	ion, c		eristics and performance				К2			
COS	, C	ompare opologie	the	operat	ion, s	witchin	-	nniques	and	basic		К	2	
CO4	1 S	ummari armonio	ze tech	niques	of puls	se widt		ulated i	nverte	rs and		К	2	
CO		lentify ontrolle	practica	al and	theore	tical sit				oltage		K	3	
	LATIO	N OF CC	Ds WITI	H POs A	AND PS	Os								
CORRE		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CORRE COs	PO1				i	1	1	1	1				L	
	РО1 Н	L	М		н							L	L	L
COs			M M		H H							L	H	L
COs CO1	Н	L										_		
COs CO1 CO2	H H	L	М		Н							_	Н	L

UNIT	1	POWER SEMI-CONDUCTOR DEVICES	9
MOSFET,	, GTO over	ng devices overview: ideal & real switching characteristics - po , IGBT - VI characteristics, Turn-on, Turn-off methods; pro voltage, specifications, losses, thermal characteristics, ser uits.	otection - di/dt, dv/dt, over
UNIT	II	CONTROLLED RECTIFIERS	9
RL and F forms, g inductan phase wi	RLE lo gate ti nce. Co vidth c	analysis of single and three phase rectifiers – half and fully c bads with and without freewheeling diodes; converter and ime control, output voltage, input current, power factor, ommutation Techniques - Power factor and harmonic impr ontrolled, symmetrical angle controlled; series converter; duration with and without circulating current modes; firing circu	inverter operation – wave effect of load and source rovement methods – multi- ual converter modes – four-
UNIT I	111	CHOPPERS	9
phase ch	hoppe	igh-power chopper circuits – voltage commutated, current c r, multi-quadrant operation, switch mode regulators – prir k boost regulators - time ratio control, variable frequency con	nciple of operation of buck,
UNIT I	IV	INVERTERS	9
D d a d a la			
waveforr delta loa	ms at ads - c	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte onics study.	auto sequential inverter– verter circuits with star and
waveforr delta loa	ms at ads - c · harm	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte	auto sequential inverter- verter circuits with star and
waveforr delta loa control - UNIT Principle principle	ms at ads - c harm V e of sin e of sin	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte onics study.	auto sequential inverter- verter circuits with star and ers – voltage and frequency 9 F and phase angle control -
waveforr delta loa control - UNIT Principle principle	ms at ads - c harm V e of sin e of sin	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte onics study. AC CHOPPER AND CYCLOCONVERETERS ngle phase and three-phase AC voltage controller – ON/OF ngle phase and three phase Cyclo converters circuits, differ	auto sequential inverter- verter circuits with star and ers – voltage and frequency 9 F and phase angle control -
waveforr delta loa control - UNIT Principle principle	ms at ads - c harm V e of sin lse gen	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte onics study. AC CHOPPER AND CYCLOCONVERETERS ngle phase and three-phase AC voltage controller – ON/OF ngle phase and three phase Cyclo converters circuits, differ	auto sequential inverter- verter circuits with star and ers – voltage and frequency 9 F and phase angle control - rent control techniques and
waveforr delta loa control - UNIT Principle principle firing pul TEXT BOO 1. M	ms at ads - c harm V e of sin e of sin lse gen DOKS: Muhar	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte onics study. AC CHOPPER AND CYCLOCONVERETERS ngle phase and three-phase AC voltage controller – ON/OF ngle phase and three phase Cyclo converters circuits, differ	auto sequential inverter- verter circuits with star and ers – voltage and frequency 9 F and phase angle control - rent control techniques and TOTAL: 45 PERIODS
waveforr delta loa control - UNIT Principle firing pul TEXT BOO 1. M	ms at ads - c harm V e of sin e of sin lse gen OKS: Muhar Pearso	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte onics study. AC CHOPPER AND CYCLOCONVERETERS ngle phase and three-phase AC voltage controller – ON/OF ngle phase and three phase Cyclo converters circuits, differ neration – Applications - VVVF, UPS, Fan Regulator.	auto sequential inverter- verter circuits with star and ers – voltage and frequency 9 F and phase angle control rent control techniques and TOTAL: 45 PERIODS plications", 3rd Edition,
waveforr delta loa control - UNIT Principle firing pul TEXT BOO 1. M	ms at ads - c harm V e of sin e of sin lse gen OKS: Muhar Pearsc Singh,	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte onics study. AC CHOPPER AND CYCLOCONVERETERS ngle phase and three-phase AC voltage controller – ON/OF ngle phase and three phase Cyclo converters circuits, differ neration – Applications - VVVF, UPS, Fan Regulator. mmad H. Rashid, "Power Electronics: Circuits, Devices and Ap on Education/Prentice Hall, 2004. M.D. and Khanchandani, K.B., "Power Electronics", 2nd Editic	auto sequential inverter- verter circuits with star and ers – voltage and frequency 9 F and phase angle control rent control techniques and TOTAL: 45 PERIODS plications", 3rd Edition,
waveforr delta loa control - UNIT Principle firing pul TEXT BOO 1. N P 2. S REFEREN	ms at ads - c harm V e of sin e of sin lse gen OKS: Muhar Pearsc Singh, NCE BC	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte onics study. AC CHOPPER AND CYCLOCONVERETERS ngle phase and three-phase AC voltage controller – ON/OF ngle phase and three phase Cyclo converters circuits, differ neration – Applications - VVVF, UPS, Fan Regulator. mmad H. Rashid, "Power Electronics: Circuits, Devices and Ap on Education/Prentice Hall, 2004. M.D. and Khanchandani, K.B., "Power Electronics", 2nd Editic	auto sequential inverter- verter circuits with star and ers – voltage and frequency 9 F and phase angle control rent control techniques and TOTAL: 45 PERIODS plications", 3rd Edition, on, Tata McGraw Hill, 2004.
waveforr delta loa control - UNIT Principle firing pul TEXT BOO 1. M P 2. S REFEREN 1. E	ms at ads - c harm V e of sin e of sin lse gen OKS: Muhar Pearsc Singh, NCE BC	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte onics study. AC CHOPPER AND CYCLOCONVERETERS ngle phase and three-phase AC voltage controller – ON/OF ngle phase and three phase Cyclo converters circuits, differ neration – Applications - VVVF, UPS, Fan Regulator. mmad H. Rashid, "Power Electronics: Circuits, Devices and Ap on Education/Prentice Hall, 2004. M.D. and Khanchandani, K.B., "Power Electronics", 2nd Editic DOKS:	auto sequential inverter- verter circuits with star and ers – voltage and frequency 9 F and phase angle control - rent control techniques and TOTAL: 45 PERIODS plications", 3rd Edition, on, Tata McGraw Hill, 2004.
waveforr delta loa control - UNIT Principle firing pul TEXT BOO 1. M F 2. S REFEREN 1. E 2. E 3. N	ms at ads - c harm V e of sin e of sin lse gen OKS: Muhar Pearsc Singh, NCE BC Bhimb Bimal Ned V	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte onics study. AC CHOPPER AND CYCLOCONVERETERS ngle phase and three-phase AC voltage controller – ON/OF ngle phase and three phase Cyclo converters circuits, differ neration – Applications - VVVF, UPS, Fan Regulator. mmad H. Rashid, "Power Electronics: Circuits, Devices and Ap on Education/Prentice Hall, 2004. M.D. and Khanchandani, K.B., "Power Electronics", 2nd Edition DOKS:	auto sequential inverter- verter circuits with star and ers – voltage and frequency 9 F and phase angle control rent control techniques and TOTAL: 45 PERIODS plications", 3rd Edition, on, Tata McGraw Hill, 2004.
waveforr delta loa control - UNIT Principle firing pul TEXT BOO 1. M F 2. S REFEREN 1. E 2. E 3. N	ms at ads - c harm V e of sin e of sin lse gen OKS: Muhar Pearso Singh, NCE BO Bhimb Bimal Ned M and De	high power VSI and CSI inverters, Modified McMurray, load and commutating elements, analysis of three phase in control and modulation techniques - unipolar, bipolar inverte onics study. AC CHOPPER AND CYCLOCONVERETERS ngle phase and three-phase AC voltage controller – ON/OF ngle phase and three phase Cyclo converters circuits, differ neration – Applications - VVVF, UPS, Fan Regulator. mmad H. Rashid, "Power Electronics: Circuits, Devices and Ap on Education/Prentice Hall, 2004. M.D. and Khanchandani, K.B., "Power Electronics", 2nd Edition DOKS: pra, P. S., "Power Electronics", 4 th Edition, Dhanpat Rai and Son K. Bose, "Modern Power Electronics and AC Drives", Pearson Iohan, Tore M. Undeland, William P. Robbins, "Power Electronics"	auto sequential inverter- verter circuits with star and ers – voltage and frequency 9 F and phase angle control rent control techniques and TOTAL: 45 PERIODS plications", 3rd Edition, on, Tata McGraw Hill, 2004.

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10211EE109	POWER SYSTEM ANALYSIS	3	1	0	4

COURSE CATEGORY: Programme Core

PREAMBLE: The course provides to the students with essential knowledge in power systems required for its analysis. It includes per-unit system, line models, application of network matrices techniques, power flow calculation for the steady-state and analysis, power system fault analysis including: symmetrical faults and unsymmetrical faults and power system stability.

PREREQUISITE COURSES: Transmission & Distribution

RELATED COURSES: Power System Operation and Control

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Introduce the characteristics of different transmission line models, steady state analysis and transient analysis of power systems
- Understand and performs the load flow analysis calculation for a power system network
- Analyse short circuit faults in power system.
- Provide the basic concept on power system stability

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
CO1	Explain the fundamentals of power systems analysis and the modelling for power systems component	К2
CO2	Perform load flow analysis	КЗ
CO3	Identify symmetrical faults in power systems	КЗ
CO4	Analyze unsymmetrical faults in power systems	К4
CO5	Perform transient stability analysis of power systems	КЗ

COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	М	L	L								Н	L
CO2	Н	Н	Н	М	L						L	L	Н	L
CO3	Н	Н	Н	М	L		L				L	L	Н	L
CO4	Н	Н	Н	Μ	L		L				L	L	Н	L
CO5	Н	Μ	М	Μ								L	Н	L

UNITI	THE POWER SYSTEM – AN OVERVIEW AND MODELLING	12
	r System - Basic Components of a power system - Per Phas nodel - line model - The per unit system - Change of base.	e Analysis Generator model -
UNIT II	POWER FLOW ANALYSIS	12
Gauss-Seidel	Bus Classification - Bus admittance matrix - Solution of non method - Newton Raphson method - Fast decoupled the three methods.	
UNIT III	FAULT ANALYSIS-BALANCED FAULT	12
	- Balanced three phase fault – short circuit capacity – system atrix – algorithm for formation of the bus impedance matrix.	natic fault analysis using bus
UNIT IV	FAULT ANALYSIS – SYMMETRICAL COMPONENTS AND UNBALANCED FAULT	12
	Fundamentals of symmetrical components – sequence imperenter of ground fault – line fault - Double line to ground fault – Ur e matrix.	-
UNIT V	POWER SYSTEM STABILITY	12
stability – Equ	s and definitions of stability – Classification of stability al area criterion – Reponses to a short circuit fault- Factors ategration methods –Modified Euler method – Runge – Kutta	nfluencing Transient stability
stability – Equ	al area criterion – Reponses to a short circuit fault- Factors	nfluencing Transient stability
stability – Equ – Numerical ir	al area criterion – Reponses to a short circuit fault- Factors	nfluencing Transient stability methods.
stability – Equ – Numerical ir TEXT BOOKS:	al area criterion – Reponses to a short circuit fault- Factors	nfluencing Transient stability methods. TOTAL: 60 PERIODS
stability – Equ – Numerical ir TEXT BOOKS: 1. Hadi S	al area criterion – Reponses to a short circuit fault- Factors ategration methods –Modified Euler method – Runge – Kutta aadat "Power System Analysis", Tata McGraw Hill Publishing dur, "Power System Stability and Control", Tata McGraw Hill	nfluencing Transient stability methods. TOTAL: 60 PERIODS Company, New Delhi, 2002
stability – Equ – Numerical ir TEXT BOOKS: 1. Hadi S 2. P.Kun	al area criterion – Reponses to a short circuit fault- Factors ategration methods –Modified Euler method – Runge – Kutta aadat "Power System Analysis", Tata McGraw Hill Publishing dur, "Power System Stability and Control", Tata McGraw Hill 1994	nfluencing Transient stability methods. TOTAL: 60 PERIODS Company, New Delhi, 2002
stability – Equ – Numerical in TEXT BOOKS: 1. Hadi S 2. P.Kun Delhi, REFERENCE BO 1. I.J.Nag	al area criterion – Reponses to a short circuit fault- Factors ategration methods –Modified Euler method – Runge – Kutta aadat "Power System Analysis", Tata McGraw Hill Publishing dur, "Power System Stability and Control", Tata McGraw Hill 1994	nfluencing Transient stability methods. TOTAL: 60 PERIODS Company, New Delhi, 2002 Publishing Company, New

	IRSE CODE:	COURSE TITLE:	L	Т	Р	C
10	211EE110	POWER SYSTEM OPERATION AND CONTROL	3	0	0	3
OURSE C	ATEGORY: Program	mme Core				
	and the various c	scussed about the preparatory work necessary ontrol actions to be implemented on the Power				
REREQU	ISITE COURSES: Po	wer System Analysis				
ELATED (COURSES: Protecti	on and Switchgear				
OURSE E	DUCATIONAL OBJ	ECTIVES:				
he object	tives of the course	are to,				
• Ge	et an overview of r	eal and reactive power operation and control.				
• Es	timate the load de	mand and commit the generating units accordin	ıgly.			
• Cr	eate awareness or	n recent trends in power system operation and c	ontrol.			
OURSE O	UTCOMES:					
Upon	the successful com	pletion of the course, students will be able to:				
CO Nos.		Course Outcomes			ning don ised Blo omy)	
CO1	Illustrate the ir regulation in rec	mportance of system frequency and voltage cent time.		K	2	
CO2	Summarize mer commitment.	thods in Forecasting of base load and Unit		K	2	
CO3	Explain plant lev	vel and system level control of real power.		K	2	
CO4		Dispatch problem including losses and lossless and Make use of controller for load frequency		K	3	
	Identify genera					

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L								L		L	Н	L
CO2	Н	М	М	L	L					L			Н	L
CO3	Н	М	М	L	М					L			Н	L
CO4	Н	М	М	L	М					L			Н	L
CO5	Н	L								L		L	Н	L

UNIT I	INTRODUCTION	9
for regulation	opted in utilities for providing reliable, quality and economic elect n of system frequency and voltage - P-F and Q-V control structure wer systems.	
UNIT II	LOAD FORECASTING AND UNIT COMMITMENT	9
method of le	ting - components of system load - classification of base load - fo east square fit - Introduction to unit commitment - constraints using priority list method and dynamic programming.	-
UNIT III	REAL POWER CONTROL	9
governing m in parallel. SYSTEM CON dynamic ana	TROL: Power control mechanism of individual machine - ma echanism - speed load characteristics of governing mechanism - F ITROL: Division of power system into control areas - LFC control lysis of uncontrolled system - proportional plus integral control c system - uncontrolled case - static and dynamic response - Tie line	Regulation of two generator of a single area - static and of a single area - LFC control
UNIT IV	ECONOMICS DISPATCH	9
Incremental	and the second	
ordination e equations us	cost curve - co-ordination equations with losses neglected - quations with loss included (No derivation of BMN co-efficient ing BMN co-efficient by iteration method - Base point and part troller added to LFC.) - solution of co-ordination
ordination e equations us dispatch con UNIT V	quations with loss included (No derivation of BMN co-efficient ing BMN co-efficient by iteration method - Base point and part troller added to LFC. PRIORITY POWER CONTROL) - solution of co-ordination ticipation factors - Economic 9
ordination e equations us dispatch con UNIT V LOCAL CONT system SYSTEM CON	quations with loss included (No derivation of BMN co-efficient ing BMN co-efficient by iteration method - Base point and part troller added to LFC.) - solution of co-ordination ticipation factors - Economic 9 gram model of exciter voltage control - injection o
ordination e equations us dispatch con UNIT V LOCAL CONT system SYSTEM CON	quations with loss included (No derivation of BMN co-efficient) ing BMN co-efficient by iteration method - Base point and part troller added to LFC. PRIORITY POWER CONTROL ROL: Fundamental characteristics of excitation system - Block diagonal TROL: Generation and absorption of reactive power - method of) - solution of co-ordination ticipation factors - Economic 9 gram model of exciter voltage control - injection o
ordination e equations us dispatch con UNIT V LOCAL CONT system SYSTEM CON	quations with loss included (No derivation of BMN co-efficient ing BMN co-efficient by iteration method - Base point and part troller added to LFC. PRIORITY POWER CONTROL ROL: Fundamental characteristics of excitation system - Block diagonal ITROL: Generation and absorption of reactive power - method of er - static shunt capacitor/inductor VAR compensator - tap chang) - solution of co-ordination ticipation factors - Economic 9 gram model of exciter voltage control - injection o ing transformer.
ordination e equations us dispatch con UNIT V LOCAL CONT system SYSTEM CON reactive pow TEXT BOOKS 1. Olle comp	quations with loss included (No derivation of BMN co-efficient ing BMN co-efficient by iteration method - Base point and part troller added to LFC. PRIORITY POWER CONTROL ROL: Fundamental characteristics of excitation system - Block diagonal ITROL: Generation and absorption of reactive power - method of er - static shunt capacitor/inductor VAR compensator - tap chang I. Elgerad, "Electric Energy System Theory and Introduction", T pany, New Delhi, 1983.) - solution of co-ordination ticipation factors - Economi 9 gram model of exciter voltage control - injection o ing transformer. TOTAL: 45 PERIODS ata Mc Graw Hill publishing
ordination e equations us dispatch con UNIT V LOCAL CONT system SYSTEM CON reactive pow TEXT BOOKS 1. Olle comp 2. I.J.Na 1998	quations with loss included (No derivation of BMN co-efficient ing BMN co-efficient by iteration method - Base point and part troller added to LFC. PRIORITY POWER CONTROL ROL: Fundamental characteristics of excitation system - Block diagonal ITROL: Generation and absorption of reactive power - method of er - static shunt capacitor/inductor VAR compensator - tap chang I. Elgerad, "Electric Energy System Theory and Introduction", T bany, New Delhi, 1983. agrath, D.P.Kothari, "Power System Engineering", Tata Mc Graw I) - solution of co-ordination ticipation factors - Economi 9 gram model of exciter voltage control - injection of ing transformer. TOTAL: 45 PERIODS ata Mc Graw Hill publishing Hill publishing company Ltd.
ordination e equations us dispatch con UNIT V LOCAL CONT system SYSTEM CON reactive pow TEXT BOOKS 1. Olle comp 2. I.J.Na 1998 3. Allen	quations with loss included (No derivation of BMN co-efficient ing BMN co-efficient by iteration method - Base point and part troller added to LFC. PRIORITY POWER CONTROL ROL: Fundamental characteristics of excitation system - Block diag ITROL: Generation and absorption of reactive power - method of er - static shunt capacitor/inductor VAR compensator - tap chang I. Elgerad, "Electric Energy System Theory and Introduction", T bany, New Delhi, 1983. agrath, D.P.Kothari, "Power System Engineering", Tata Mc Graw I) - solution of co-ordination ticipation factors - Economi 9 gram model of exciter voltage control - injection of ing transformer. TOTAL: 45 PERIODS ata Mc Graw Hill publishing Hill publishing company Ltd.
ordination e equations us dispatch con UNIT V LOCAL CONT system SYSTEM CON reactive pow TEXT BOOKS 1. Olle comp 2. I.J.Na 1998 3. Allen Sons	quations with loss included (No derivation of BMN co-efficient ing BMN co-efficient by iteration method - Base point and part troller added to LFC. PRIORITY POWER CONTROL ROL: Fundamental characteristics of excitation system - Block diag TROL: Generation and absorption of reactive power - method of er - static shunt capacitor/inductor VAR compensator - tap chang : I. Elgerad, "Electric Energy System Theory and Introduction", T bany, New Delhi, 1983. agrath, D.P.Kothari, "Power System Engineering", Tata Mc Graw H J.Wood, Bruce F. Wollenbarg, "Power Generation, Operation a , 1984.) - solution of co-ordination ticipation factors - Economi 9 gram model of exciter voltage control - injection of ing transformer. TOTAL: 45 PERIODS ata Mc Graw Hill publishing Hill publishing company Ltd.
ordination e equations us dispatch con UNIT V LOCAL CONT system SYSTEM CON reactive pow TEXT BOOKS 1. Olle comp 2. I.J.Na 1998 3. Allen Sons REFERENCE I 1. B.M.	quations with loss included (No derivation of BMN co-efficient ing BMN co-efficient by iteration method - Base point and part troller added to LFC. PRIORITY POWER CONTROL ROL: Fundamental characteristics of excitation system - Block diag TROL: Generation and absorption of reactive power - method of er - static shunt capacitor/inductor VAR compensator - tap chang : I. Elgerad, "Electric Energy System Theory and Introduction", T bany, New Delhi, 1983. agrath, D.P.Kothari, "Power System Engineering", Tata Mc Graw H J.Wood, Bruce F. Wollenbarg, "Power Generation, Operation a , 1984.) - solution of co-ordination ticipation factors - Economi 9 gram model of exciter voltage control - injection of ing transformer. TOTAL: 45 PERIODS ata Mc Graw Hill publishing Hill publishing company Ltd. nd Control", John Wiley and
ordination e equations us dispatch con UNIT V LOCAL CONT system SYSTEM CON reactive pow TEXT BOOKS 1. Olle com 2. I.J.Na 1998 3. Allen Sons REFERENCE I 1. B.M. Amst 2. A.K.N	quations with loss included (No derivation of BMN co-efficient ing BMN co-efficient by iteration method - Base point and part troller added to LFC. PRIORITY POWER CONTROL ROL: Fundamental characteristics of excitation system - Block diag TROL: Generation and absorption of reactive power - method of er - static shunt capacitor/inductor VAR compensator - tap chang I. Elgerad, "Electric Energy System Theory and Introduction", T bany, New Delhi, 1983. agrath, D.P.Kothari, "Power System Engineering", Tata Mc Graw I J.Wood, Bruce F. Wollenbarg, "Power Generation, Operation a , 1984. BOOKS: Weedy, "Electric Power System", John Wiley & Sons, Els) - solution of co-ordinatio ticipation factors - Economi 9 gram model of exciter voltage control - injection of ing transformer. TOTAL: 45 PERIOD ata Mc Graw Hill publishin Hill publishing company Ltd nd Control", John Wiley an sevier publishing company
ordination e equations us dispatch con UNIT V LOCAL CONT system SYSTEM CON reactive pow TEXT BOOKS 1. Olle comp 2. I.J.Na 1998 3. Allen Sons REFERENCE I 1. B.M. Amst 2. A.K.N Tata	quations with loss included (No derivation of BMN co-efficient ing BMN co-efficient by iteration method - Base point and part troller added to LFC. PRIORITY POWER CONTROL ROL: Fundamental characteristics of excitation system - Block diag TROL: Generation and absorption of reactive power - method of er - static shunt capacitor/inductor VAR compensator - tap chang I. Elgerad, "Electric Energy System Theory and Introduction", T bany, New Delhi, 1983. agrath, D.P.Kothari, "Power System Engineering", Tata Mc Graw I J.Wood, Bruce F. Wollenbarg, "Power Generation, Operation a , 1984. BOOKS: Weedy, "Electric Power System", John Wiley & Sons, Els terdam, 1972. Mahalanbias, D.P.Kothari & S.I.Ahson, "Computer Aided Power S) - solution of co-ordinatio ticipation factors - Economic 9 gram model of exciter voltage control - injection of ing transformer. TOTAL: 45 PERIOD ata Mc Graw Hill publishin Hill publishing company Ltd nd Control", John Wiley an sevier publishing company

	JRSE CODE:	COURSE TITLE:	L	Т	Р	C
10	211EE111	ELECTRICAL MACHINE DESIGN	3	1	0	4
DURSE C	CATEGORY: Program	mme Core				
		trical machine design provides an introduction to		-	various	DC a
C Machi	nes and gives a ger	neral idea to the computer aided design of Electri	ical mac	hines.		
REREQU	ISITE COURSES: DO	C Machines and Transformers, AC Machines				
ELATED	COURSES: DC Mac	hines and Transformers, AC Machines				
OURSE E	DUCATIONAL OBJ	ECTIVES:				
ne objec	tives of the course	are to,				
• E>	pose the students	towards the design of various types of electrical	machin	es		
• U	nderstand the basi	ic concept of armature and field winding of DC m	achine			
• U	nderstand of basic	design and cooling system of electrical transform	ner			
• U	nderstand the con	cept of induction machine				
• U	nderstand the con	cept of synchronous machine				
OURSE (DUTCOMES:					
Upon	the successful com	npletion of the course, students will be able to:				
со		ipicitori or the course, students will be able to:				
Nos.		Course Outcomes			ning dor ised Blo omy)	
				l on rev	ised Blo omy)	
Nos.	various types of	Course Outcomes y of MMF calculation and thermal rating of		l on rev taxon	ised Blo omy) 2	
Nos. CO1	various types of Explain armatur	Course Outcomes y of MMF calculation and thermal rating of electrical machines.		l on rev taxon K	ised Blo omy) 2 2	
Nos. CO1 CO2	various types of Explain armatur Demonstrate the	Course Outcomes y of MMF calculation and thermal rating of electrical machines. e and field systems for D.C machines.		l on rev taxon K: K:	ised Blo omy) 2 2	

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	М	М	L	L						L		М	М
CO2	Н	Н	Н	М	L						L		Н	М
CO3	Н	Н	Н	М	L						L		Н	М
CO4	Н	Н	Н	М	L						L		Н	М
CO5	Н	Н	Н	М	L						L		Н	М

	E CONT	ENT:	
UNI	ΙΤΙ	CALCULATIONS OF MMF FOR ROTATING ELECTRICAL MACHINES	12
-	tic circı	erations in Electrical Machine Design – Materials for Electr uits – Real and Apparent flux densities–Magnetizing current	
UNI	ΤII	DESIGN OF D.C MACHINES	12
		details of DC machine - Output equation - Choice of poles - De Design of commutators and brush - Armature reactions.	esign of field system - Design
UNI	T III	DESIGN OF TRANSFORMERS	12
		features - Output equation, output rating of single phase and t e, design of winding - Design of tank and cooling tubes - Temper	
UNI	ΓΙν	DESIGN OF INDUCTION MACHINES	12
		details - Output equation - Choice of specific loadings – Design sign of slip ring rotor	n of stator–Design of squirrel
UNI	тν	DESIGN OF SYNCHRONOUS MACHINES	12
			12
Constru machin	uction c ie - Shor	letails - Runaway speed - Output equations - Choice of load t Circuit Ratio - Armature design - Estimation of air gap length of full load field MMF - Design of field winding - Introduction to	ling - Design of salient pole - Design of damper winding -
Constru machin	uction c ie - Shor	letails - Runaway speed - Output equations - Choice of load rt Circuit Ratio - Armature design - Estimation of air gap length	ling - Design of salient pole - Design of damper winding -
Constru machin	uction c le - Shor nination	letails - Runaway speed - Output equations - Choice of load rt Circuit Ratio - Armature design - Estimation of air gap length	ling - Design of salient pole - Design of damper winding - o computer aided design
Constru machin Determ TEXT B (uction c ie - Shor nination OOKS: Mittle	letails - Runaway speed - Output equations - Choice of load rt Circuit Ratio - Armature design - Estimation of air gap length	ling - Design of salient pole - Design of damper winding - o computer aided design TOTAL: 60 PERIODS
Constru machin Determ TEXT B 1.	uction contraction contractic contraction contraction contraction contraction contraction	letails - Runaway speed - Output equations - Choice of load rt Circuit Ratio - Armature design - Estimation of air gap length of full load field MMF - Design of field winding - Introduction to V.M. and Mittl E.A, Design of Electrical Machines, standard pub	ling - Design of salient pole - Design of damper winding - o computer aided design TOTAL: 60 PERIODS lishers Distribution, Fourth
Constru machin Determ TEXT B 1.	uction contraction contraction contraction nination OOKS: Mittle edition Sawhn	 Runaway speed - Output equations - Choice of load rt Circuit Ratio - Armature design - Estimation of air gap length of full load field MMF - Design of field winding - Introduction to V.M. and Mittl E.A, Design of Electrical Machines, standard pub n, 1996. ey, A.K. A course in Electrical Machine Design, Dhanpat Rai & sc 	ling - Design of salient pole - Design of damper winding - o computer aided design TOTAL: 60 PERIODS lishers Distribution, Fourth
Constru machin Determ TEXT Bo 1. 2. REFERE	OOKS: Mittle editior Sawhn	 Runaway speed - Output equations - Choice of load rt Circuit Ratio - Armature design - Estimation of air gap length of full load field MMF - Design of field winding - Introduction to V.M. and Mittl E.A, Design of Electrical Machines, standard pub n, 1996. ey, A.K. A course in Electrical Machine Design, Dhanpat Rai & sc 	ling - Design of salient pole - Design of damper winding - o computer aided design TOTAL: 60 PERIODS lishers Distribution, Fourth ons, 1993.
Constru machin Determ TEXT Bo 1. 2. REFERE	OOKS: Mittle editior Sawhn Rai, H.I Say M.	Aetails - Runaway speed - Output equations - Choice of load of Circuit Ratio - Armature design - Estimation of air gap length of full load field MMF - Design of field winding - Introduction to V.M. and Mittl E.A, Design of Electrical Machines, standard pub a, 1996. ey, A.K. A course in Electrical Machine Design, Dhanpat Rai & sc DOKS:	ling - Design of salient pole - Design of damper winding - o computer aided design TOTAL: 60 PERIODS lishers Distribution, Fourth ons, 1993.
Construmachin Determon TEXT Boon 1. 2. REFERE 1. 2.	OOKS: Mittle editior Sawhn Rai, H.I Say M. Londor Claytor	 details - Runaway speed - Output equations - Choice of load rt Circuit Ratio - Armature design - Estimation of air gap length of full load field MMF - Design of field winding - Introduction to V.M. and Mittl E.A, Design of Electrical Machines, standard pub h, 1996. ey, A.K. A course in Electrical Machine Design, Dhanpat Rai & sc DOKS: M. Electrical Machine Design, Sathiya Prakashan Publications, T .G., The Performance & Design of Alternating current Machine 	ling - Design of salient pole - Design of damper winding - o computer aided design TOTAL: 60 PERIODS lishers Distribution, Fourth ons, 1993. hird edition, 1992. es Isaac Pitman & sons Ltd.,
Constru machin Determ TEXT B 1. 2. REFERE 1. 2.	OOKS: Mittle editior Sawhn ENCE BC Rai, H.I Say M. Londor Claytor Sri Isaa	 details - Runaway speed - Output equations - Choice of load rt Circuit Ratio - Armature design - Estimation of air gap length of full load field MMF - Design of field winding - Introduction to V.M. and Mittl E.A, Design of Electrical Machines, standard pub h, 1996. ey, A.K. A course in Electrical Machine Design, Dhanpat Rai & sc DOKS: M. Electrical Machine Design, Sathiya Prakashan Publications, T .G., The Performance & Design of Alternating current Machine n 1995. n, A.E., Performance & Design of Direct current Machines, Engl 	ling - Design of salient pole - Design of damper winding - o computer aided design TOTAL: 60 PERIODS lishers Distribution, Fourth ons, 1993. hird edition, 1992. es Isaac Pitman & sons Ltd.,

	OURSE CO						JRSE TI				L	Т	Р	C
1	0211EE1	12		MICRO	PROCI	ESSOR	AND M	IICROC	ONTRO	LLERS	3	0	0	3
COURS	E CATEG	ORY: F	Progra	mme C	ore									
and Mi	IBLE: The crocontro litecture,	oller. 1	To solv	e real v	world p	probler	ns in ar	n efficie	ent mai	nner an	d this o	course	•	
PRE-RE	QUISITE	COUR	SES: D	igital E	lectror	nics								
RELATE		SES: E	Embed	ded Sys	stem D	esign a	ind Eml	bedded	Proces	ssors.				
OURS	E EDUCA	TION	AL OBJ	IECTIVE	S:									
The obj	iectives c	of the o	course	e are to,	,									
•	Underst	tand th	he inte	ernal or	ganizat	tion, ac	ddressin	ng mod	es and	instruc	tion se	ts of 80)85 pro	cesso
•	Familiar	r with t	the va	rious fu	unction	al unit	s of 805	51 micr	ocontro	oller.				
•	Constru address			dded C	and as	ssembly	y langu	age pro	ogram	by usin	g 8051	Instru	ction se	ets an
•		-												
			085 ne	arinher	al devi		h as 82	55 827	19 825	1 8253	8259	and 82	37	
										1, 8253 ious a				vance
•	Study t	the m	nicroco	ontrolle	er-base	d syst								vance
•	Study to process	the m ors like	nicroco e PIC,	ontrolle	er-base	d syst								vance
• COURS	Study 1 process E OUTCC	the m ors like	nicroco e PIC,	ontrolle ARM ar	er-base nd ATM	d syst IEGA.	em de	esign f	or var	ious a				vance
• COURS Upd	Study to process	the m ors like	nicroco e PIC,	ontrolle ARM ar	er-base nd ATM	d syst IEGA.	em de	esign f	or var	ious a	pplicat	ions a	nd ad	
• COURS Upd CO	Study to process E OUTCC on the su	the m ors like	nicroco e PIC,	ARM ar	er-base nd ATM n of th	d syst IEGA.	em de	esign f	or var	ious a	pplicat K (B	ions a nowled	nd ad dge Lev n revis	el ed
• COURS Upd	Study to process E OUTCC on the su	the m ors like DMES: uccessf	nicrocc e PIC, . ful con	npletion	er-base nd ATM n of the Course	d syst IEGA. e cours Outcor	em de se, stud mes	esign f	or var	ious a	pplicat K (B	ions a nowled	nd ad	el ed
• COURS Upd CO	Study to process E OUTCC on the su Deve	the mors like ors like omes: uccessf	nicrocc e PIC, . ful con	ARM ar	er-base nd ATM n of the Course	d syst /IEGA. e cours Outcor	em de se, stud mes cessor	esign f	or var	ious a	pplicat K (B	ions a nowlec ased o oom's T	nd ad dge Lev n revis	el ed
• Upd CO Nos.	Study to process E OUTCC on the su Deve organ Expla	the mors like ors like omes: uccessf uccessf uccessf uccessf	ful con n ALP n for t	npletion on trolle	er-base nd ATM n of th Course 085 mi en spec	d syst AEGA. e cours Outcor cropro cificatio	em de se, stud mes cessor n	esign f lents wi	or var ill be at the in	ious a ble to: ternal	pplicat K (B	ions a nowlec ased o oom's T k	nd ad dge Lev n revis axonoi	el ed
• COURS Upp CO Nos. CO1	Study to process E OUTCC on the su Deve organ Expla 8259 Desc	the mors like ors like omes: uccessf elop an nizatio ain the and 8	ful con n ALP on for t perip 2237. the	npletion c in 80 he give	er-base nd ATM n of th Course 085 mi en spec devices	d syst AEGA. e cours Outcor cropro cificatio s such a	em de se, stud mes cessor n as 8255	esign f lents wi using 5, 8279	or var ill be at the in , 8251,	ious a ble to: ternal 8253,	pplicat K (B	ions a nowlec ased o oom's T k	nd ad dge Lev n revis axonor 3	el ed
• COURS Upp CO Nos. CO1 CO2	Study t process E OUTCC on the su Deve orgar Expla 8259 Desc micro Deve	the more like ors like oMES: uccessf elop an nizatio ain the and 8 ribe ocontr elop an	ful con ful con n ALP on for t 237. the coller	npletion c in 80 herals o	er-base nd ATM n of the Course 985 mi en spec devices ecture C and A	d syst AEGA. e cours Outcor cropro cificatio s such a and f ALP in 8	em de se, stud mes cessor n as 8255 unctior 8051 m	esign f lents wi using 5, 8279 nal blo	or var ill be at the in , 8251, ick of ntroller	ious a ble to: ternal 8253, 8051	pplicat K (B	ions a nowlec ased o oom's T k k	nd ad dge Lev n revis Gaxonor (3 (2	el ed
COURS Upp CO Nos. CO1 CO2 CO3	Study t process E OUTCC on the su Deve orgar Expla 8259 Desc micro Deve the ir Expla	the more like ors like oMES: uccessf uccessf ain the and 8 ribe ocontr slop an nterna ain mic	ful con ful con n ALP on for t e perip 2237. the coller n embe il funct crocon	npletion in 80 herals of archite	er-base nd ATM n of th Course 085 mi en spec devices devices cture C and A locks f applica	d syst AEGA. e cours Outcor cropro- cificatio s such a and f ALP in 8 or the 8	em de se, stud mes cessor n as 8255 unctior 8051 m given sp	esign f lents wi using 5, 8279 hal blo nicrocor pecifica	or var ill be at the in , 8251, ock of ntroller tion	ious a ble to: ternal 8253, 8051 using	pplicat K (B	ions a nowlec ased o oom's T K K K	nd ad dge Lev n revis axonor (3 (2 (2) (2)	el ed
• COURS Upro CO Nos. CO1 CO2 CO3 CO4 CO5	Study t process E OUTCC on the su Deve orgar Expla 8259 Desc micro Deve the ir Expla PIC, A	the more like ors like omes: uccessf elop an nizatio ain the and 8 ribe ocontr elop an nterna ain mic ARM a	n ALP n ALP n for t perip 237. the coller n embe il funct crocon nd ATI	npletion ARM ar npletion c in 80 herals o archite edded (tional b troller a MEGA p	er-base nd ATM n of the Course 085 mi en spec devices devices cture C and A locks f applica process	d syst AEGA. e cours Outcor cropro- cificatio s such a and f ALP in 8 or the 8 stions a sors.	em de se, stud mes cessor n as 8255 unctior 8051 m given sp	esign f lents wi using 5, 8279 hal blo nicrocor pecifica	or var ill be at the in , 8251, ock of ntroller tion	ious a ble to: ternal 8253, 8051 using	pplicat K (B	ions a nowlec ased o oom's T K K K	nd ad dge Lev n revis Gaxonoi (3) (2) (2) (3)	el ed
• COURS Upro CO Nos. CO1 CO2 CO3 CO4 CO5	Study t process E OUTCC on the su Deve orgar Expla 8259 Desci micro Deve the ir Expla PIC, <i>A</i>	the more like ors like omession accession alop and alop alop and alop alop and alop alop alop alop alop alop alop alop	n ALP n ALP n for t perip 237. the coller n embe il funct crocon nd ATI	npletion ARM ar npletion c in 80 herals o archite edded (tional b troller a MEGA p	er-base nd ATM n of the Course 085 mi en spec devices devices cture C and A locks f applica process	d syst AEGA. e cours Outcor cropro- cificatio s such a and f ALP in 8 or the 8 stions a sors.	em de se, stud mes cessor n as 8255 unctior 8051 m given sp	esign f lents wi using 5, 8279 hal blo nicrocor pecifica	or var ill be at the in , 8251, ock of ntroller tion	ious a ole to: ternal 8253, 8051 using	pplicat K (B	ions a nowlec ased o oom's T K K K K K	nd ad	rel ed my)
• COURS Upp CO Nos. CO1 CO2 CO3 CO3 CO4 CO5	Study t process E OUTCC on the su Deve orgar Expla 8259 Descr micro Deve the ir Expla PIC, A	the more like ors like omession accession alop and alop alop and alop alop and alop alop alop alop alop alop alop alop	ful con ful con n ALP on for t perip 2237. the coller n embe al funct crocon nd ATI	npletion ARM ar npletion in 80 che give herals o archite edded (tional b troller a MEGA p H POs A	er-base nd ATM n of the Course 285 mi en spec devices devices cture C and A locks f applica process	d syst AEGA. e cours Outcor cropro- cificatio s such a and f ALP in a or the a stions a sors. Os	em de se, stud mes cessor n as 8255 unctior 8051 m given sp ind basi	esign f lents wi using 5, 8279 hal blo hicrocor pecifica ic archi	or var ill be ak the in , 8251, ck of troller tecture	ious a ole to: ternal 8253, 8051 using	pplicat K (B Blo	ions a nowlec ased o oom's T K K K K K	nd ad	rel ed my)

CO3

CO4

CO5

Н

Н

Н

М

Μ

Μ

L

Μ

L

L

L

Μ

М

Μ

М

Н

Н

Н

Μ

Μ

М

	ITI	8085 MICROPROCESSOR	9
	ssing m	cture – Pin diagram-Memory interfacing – I/O interfacing- Timing nodes – Assembly language programming- comparison of 8 bit	-
UNI	тп	8085 MICROPROCESSOR PERIPHERAL DEVICES	9
		heral Interface (8255) - Timer / Counter (8253) - Keyboard and I) - Interrupt Controller (8259) - DMA Controller (8237).	Display Controller (8279)
UNI	T III	8051 MICROCONTROLLER	9
		 memory organization –I/O ports and circuits-Timers - Interrupt External Memory-Interfacing LCD & Keyboard-RTC. 	ts –serial communication
UNI	τιν	8051 MICROCONTROLLER PROGRAMMING	9
	•	nodes -instruction set -Assembly language programming an ramming – Serial Communication Programming- Interrupt Programming	v v
UNI	тν	APPLICATIONS OF MICROCONTROLLERS	9
_			
•		control system - Motor speed control system – Traffic light Sy ions system - Introduction to architecture of PIC, ARM, ATMEGA	·
•			processors.
Data A		ions system - Introduction to architecture of PIC, ARM, ATMEGA	·
Data A	cquisit BOOKS: Rame	ions system - Introduction to architecture of PIC, ARM, ATMEGA	processors. TOTAL: 45 PEROIDS
Data A	Cquisit COOKS: Rame Editic Muha	ions system - Introduction to architecture of PIC, ARM, ATMEGA	processors. TOTAL: 45 PEROIDS Application with 8085', 6 th 'The 8051 Microcontrolle
Data A TEXT B 1. 2.	Cquisit COOKS: Rame Editic Muha	ions system - Introduction to architecture of PIC, ARM, ATMEGA esh S Gaonkar, 'Microprocessor Architecture, Programming and A on, Penram International Publishing. ammad Ali Mazidi, Janice GillispieMazidi and Rolin D McKinlay, imbedded Systems using Assembly and C', 2 nd Edition Pearson ed	processors. TOTAL: 45 PEROIDS Application with 8085', 6 th 'The 8051 Microcontrolle
Data A TEXT B 1. 2. REFER	BOOKS: Rame Editic Muha and E ENCE B Moha	ions system - Introduction to architecture of PIC, ARM, ATMEGA esh S Gaonkar, 'Microprocessor Architecture, Programming and A on, Penram International Publishing. ammad Ali Mazidi, Janice GillispieMazidi and Rolin D McKinlay, imbedded Systems using Assembly and C', 2 nd Edition Pearson ed	processors. TOTAL: 45 PEROIDS Application with 8085', 6 ^t 'The 8051 Microcontrolle lucation Asia.
Data A TEXT B 1. 2. REFER 1.	BOOKS: Rame Editic Muha and E ENCE B Moha Editic Kenne	ions system - Introduction to architecture of PIC, ARM, ATMEGA esh S Gaonkar, 'Microprocessor Architecture, Programming and A on, Penram International Publishing. ammad Ali Mazidi, Janice GillispieMazidi and Rolin D McKinlay, imbedded Systems using Assembly and C', 2 nd Edition Pearson ed OOKS: amed Rafiquzzaman, 'Microprocessor and Microcomputer Ba	processors. TOTAL: 45 PEROIDS Application with 8085', 6 ^t 'The 8051 Microcontrolle Jucation Asia. ased System Design', 2 ⁿ
Data A TEXT B 1. 2. REFER 1. 2.	CQUISIT BOOKS: Rame Editic Muha and E ENCE B Moha Editic Kenna 3 rd Edi A.K	ions system - Introduction to architecture of PIC, ARM, ATMEGA esh S Gaonkar, 'Microprocessor Architecture, Programming and A on, Penram International Publishing. ammad Ali Mazidi, Janice GillispieMazidi and Rolin D McKinlay, imbedded Systems using Assembly and C', 2 nd Edition Pearson ed OOKS: amed Rafiquzzaman, 'Microprocessor and Microcomputer Ba on, CRC press eth J Ayala, 'The 8051 Microcontroller Architecture Progra	processors. TOTAL: 45 PEROIDS Application with 8085', 6 ^t 'The 8051 Microcontrolle Jucation Asia. ased System Design', 2 ⁿ mming and Application'

	CODE:	COURSE TITLE:		L	Т	Р	(
10211E	E113	ELECTRONIC CIRCUITS		3	0	0	
OURSE CAT	EGORY: Prog	gramme Core					
	ponents suc	ives a comprehensive exposure to all types of amplifie h as BJTs and FETs. Also, helps to develop a strong ba					
REREQUISIT	E COURSES:	Basic Electronics and Measurement Engineering					
ELATED COU	URSES: Linea	ar Integrated Circuits, Digital Electronics					
OURSE EDU	CATIONAL C	DBJECTIVES:					
he objective	s of the cou	rse are to:					
 Desig 	n amplifier a	and oscillator circuits.					
Class	ify and analy	ze power amplifier circuits.					
• Unde	erstand the c	oncept of feedback amplifiers and its topologies					
		oncept of feedback amplifiers and its topologies operation of pulse circuits					
• Unde	erstand the						
• Unde	erstand the COMES:						
• Unde	erstand the COMES:	operation of pulse circuits	Knowledge on revise Taxo		om's	ed	
• Unde DURSE OUT Upon the CO	erstand the COMES: successful c	operation of pulse circuits completion of the course, students will be able to:	on revise Taxo	d Blo	om's	ed	
Unde Unde Upon the CO Nos.	erstand the COMES: successful of Design BJT	operation of pulse circuits completion of the course, students will be able to: Course Outcomes	on revise Taxo	d Blo nomy	om's	ed	
Unde Unde Upon the CO Nos. CO1	COMES: successful of Design BJT Analyze tra	operation of pulse circuits completion of the course, students will be able to: Course Outcomes Tand FET amplifier and oscillator circuits. ansistorized amplifier and oscillator circuits. d the concept of feedback amplifiers and its	on revise Taxo	ed Blo nomy <2	om's	ed	
Unde Unde Upon the CO Nos. CO1 CO2	COMES: successful of Design BJT Analyze tra Understan topologies	operation of pulse circuits completion of the course, students will be able to: Course Outcomes Tand FET amplifier and oscillator circuits. ansistorized amplifier and oscillator circuits. d the concept of feedback amplifiers and its	on revise Taxo	ed Blo nomy <2 <4	om's	ed	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	М	L								L	Н	М
CO2	Н	М	М	М								L	Н	М
CO3	Н	М	М	М								L	Н	М
CO4	Н	М	М	М								L	Н	М
CO5	Н	М	М									L	Н	М

UNIT I	SMALL SIGNAL AMPLIFIERS	9
Biasing c	ircuits of BJT and FET transistors, analysis and design of BJT and FET amplifiers, s, case studies – application of current amplifiers in SCR firing circuits and power supp	chopper stabilized
UNIT II	LARGE SIGNAL AMPLIFIERS	9
	nplifiers- classification, analysis and design of class A and class B power amplifiers, s, thermal considerations, tuned amplifiers.	class C and class I
UNIT III	FEEDBACK AMPLIFIERS	9
input and	ncept of feedback amplifiers, effect of negative feedback on gain, gain stability, dist d output impedances; topologies of feedback amplifiers, case studies – application of converters.	
UNIT IV	OSCILLATORS	9
	en criterion for oscillation – Hartley & Colpitt's oscillators – RC phase shift, Wien	bridge and crysta
oscillator	s - Clapp oscillator – oscillator amplitude stabilization.	
UNIT V	PULSE CIRCUITS	9
UNIT V Attenuato	PULSE CIRCUITS ors – RC integrator and differentiator circuits – diode clampers and clippers –multi JJT Oscillator, case studies – application of UJT oscillator in SCR firing circuits and opto	l vibrators - Schmit o-electronic contro
UNIT V Attenuato Trigger- U circuits.	PULSE CIRCUITS ors – RC integrator and differentiator circuits – diode clampers and clippers –multi JJT Oscillator, case studies – application of UJT oscillator in SCR firing circuits and opto	l vibrators - Schmit o-electronic contro
UNIT V Attenuato Trigger- U circuits. TEXT BOO	PULSE CIRCUITS ors – RC integrator and differentiator circuits – diode clampers and clippers –multi JJT Oscillator, case studies – application of UJT oscillator in SCR firing circuits and opto DKS:	vibrators - Schmit
UNIT V Attenuate Trigger- L circuits. TEXT BOO 1. Ja	PULSE CIRCUITS ors – RC integrator and differentiator circuits – diode clampers and clippers –multi JJT Oscillator, case studies – application of UJT oscillator in SCR firing circuits and opto TOKS: acob Millman, 'Microelectronics', McGraw Hill, 2nd Edition, Reprinted, 2009.	vibrators - Schmi o-electronic contro TOTAL: 45 PERIOD
UNIT V Attenuato Trigger- U circuits. TEXT BOO 1. Ja 2. D	PULSE CIRCUITS ors – RC integrator and differentiator circuits – diode clampers and clippers –multi JJT Oscillator, case studies – application of UJT oscillator in SCR firing circuits and opto DKS:	vibrators - Schmi o-electronic contro TOTAL: 45 PERIOD
UNIT V Attenuato Trigger- U circuits. TEXT BOO 1. Ja 2. D 2	PULSE CIRCUITS ors – RC integrator and differentiator circuits – diode clampers and clippers –multi JJT Oscillator, case studies – application of UJT oscillator in SCR firing circuits and opte TOKS: acob Millman, 'Microelectronics', McGraw Hill, 2nd Edition, Reprinted, 2009. David A Bell, 'Fundamentals of Electronic Devices and Circuits', Oxford University P	vibrators - Schmi o-electronic contro TOTAL: 45 PERIOD
UNIT V Attenuato Trigger- U circuits. TEXT BOO 1. Ja 2. D 2 REFEREN	PULSE CIRCUITS ors – RC integrator and differentiator circuits – diode clampers and clippers –multi JJT Oscillator, case studies – application of UJT oscillator in SCR firing circuits and opte TOKS: acob Millman, 'Microelectronics', McGraw Hill, 2nd Edition, Reprinted, 2009. David A Bell, 'Fundamentals of Electronic Devices and Circuits', Oxford University P 009.	vibrators - Schmi o-electronic contro r OTAL: 45 PERIOD ress, Incorporated
UNIT V Attenuato Trigger- L circuits. TEXT BOO 1. Ja 2. D 2 REFERENO 1. A	PULSE CIRCUITS ors – RC integrator and differentiator circuits – diode clampers and clippers –multi JJT Oscillator, case studies – application of UJT oscillator in SCR firing circuits and opte DKS: acob Millman, 'Microelectronics', McGraw Hill, 2nd Edition, Reprinted, 2009. David A Bell, 'Fundamentals of Electronic Devices and Circuits', Oxford University P 009. CE BOOKS:	vibrators - Schmi o-electronic contro FOTAL: 45 PERIOD ress, Incorporated
UNIT V Attenuato Trigger- U circuits. TEXT BOO 1. Ja 2. D 2 REFEREN 1. A 2. T	PULSE CIRCUITS ors – RC integrator and differentiator circuits – diode clampers and clippers –multi JJT Oscillator, case studies – application of UJT oscillator in SCR firing circuits and opto TOKS: acob Millman, 'Microelectronics', McGraw Hill, 2nd Edition, Reprinted, 2009. David A Bell, 'Fundamentals of Electronic Devices and Circuits', Oxford University P 009. CE BOOKS: Illen Mottershead, 'Electronic Devices and Circuits-An Introduction', PHI, 18th Reprint,	vibrators - Schmi p-electronic contro roTAL: 45 PERIOD ress, Incorporated , 2006. th Edition, 2010.
UNIT V Attenuato Trigger- U circuits. TEXT BOO 1. Ja 2. D 2 REFEREN 1. A 2. T 3. R	PULSE CIRCUITS ors – RC integrator and differentiator circuits – diode clampers and clippers –multi JJT Oscillator, case studies – application of UJT oscillator in SCR firing circuits and opter DKS: acob Millman, 'Microelectronics', McGraw Hill, 2nd Edition, Reprinted, 2009. David A Bell, 'Fundamentals of Electronic Devices and Circuits', Oxford University P 009. CE BOOKS: Illen Mottershead, 'Electronic Devices and Circuits-An Introduction', PHI, 18th Reprint, homas L. Floyd, David M. Buchla, 'Electronics Fundamentals', Pearson Prentice Hall, 7	vibrators - Schmi p-electronic contro roTAL: 45 PERIOD ress, Incorporated , 2006. th Edition, 2010.
UNIT V Attenuato Trigger- U circuits. TEXT BOO 1. Ja 2. D 2 REFEREN 1. A 2. T 3. R 4. S 5. Ja	PULSE CIRCUITS ors – RC integrator and differentiator circuits – diode clampers and clippers –multi JJT Oscillator, case studies – application of UJT oscillator in SCR firing circuits and opto DKS: acob Millman, 'Microelectronics', McGraw Hill, 2nd Edition, Reprinted, 2009. David A Bell, 'Fundamentals of Electronic Devices and Circuits', Oxford University P 009. CE BOOKS: Illen Mottershead, 'Electronic Devices and Circuits-An Introduction', PHI, 18th Reprint, homas L. Floyd, David M. Buchla, 'Electronics Fundamentals', Pearson Prentice Hall, 7 cobert.L.Boylestad, 'Electronic Devices and Circuit Theory', Pearson, 10th Edition, 2009	vibrators - Schmi p-electronic contro rotal: 45 PERIOD ress, Incorporated , 2006. th Edition, 2010.

1	URSE CODE: 0211EE114	COURSE TITLE: LINEAR INTEGRATED CIRCUITS	L 3	т 0	P 0	С З
OURS	E CATEGORY: Prog	gramme Core				
	-	ated Circuits introduces the basic concepts of Integrate electronic circuits like operational amplifiers, rectifiers		along v	vith	
	•	Basic Electronics and Measurement Engineering, Electronic		uits		
RELATE	D COURSES: Circu	it Analysis				
OURS	E EDUCATIONAL C	DBJECTIVES:				
he obj	ectives of the cou	rse are to,				
٠	Familiar in the op	erational amplifier principle, analysis, design with its ap	oplications	5.		
•	Illustrate the line	ar and nonlinear applications of operational amplifiers.				
•	Understand the d	perating principles of PLL.				
٠	Familiar in the op	eration of ADC, DAC and its classifications.				
•	Understand the a	pplications of specific ICs.				
OURS	E OUTCOMES:					
	e OUTCOIVIES:					
Upo		completion of the course, students will be able to:				
Upo CO			Level of		-	
		completion of the course, students will be able to: Course Outcomes			revised	
со	on the successful o	Course Outcomes ectronic circuits using Operational Amplifier for the		ed on	revised	
CO Nos.	Construct the el given specificati	Course Outcomes ectronic circuits using Operational Amplifier for the		ed on Bloom	revised	
CO Nos.	Construct the el given specificati Explain the linea including compa	Course Outcomes ectronic circuits using Operational Amplifier for the ons. ar and nonlinear applications of Operational Amplifier		Bloom K3	revised	
CO Nos. CO1 CO2	Construct the el given specificati Explain the linea including compa	Course Outcomes ectronic circuits using Operational Amplifier for the ons. ar and nonlinear applications of Operational Amplifier arators and waveform generators.		K3 K2	revised	

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	М	L	L								Н	
CO2	Н	Μ	М	Μ	L								Н	
CO3	Н	Μ	М	М	L								Н	
CO4	Н	М	М	М	L						L		Н	
CO5	Н	Μ	М		L						L	М	Н	М

	CONTENT:	
UNIT I	INTRODUCTION TO OPERATIONAL AMPLIFIERS	12
load - cu represent	ential amplifier - Concept of CMRR - methods to improve CMRR - constant rrent mirror - Darlington pair differential input impedance - The Ideal Op ation of Op Amp Voltage Transfer Curve of Op Amp - DC and AC Charactery y Response - Slew Rate. Active Filters: Low pass, High Pass and band pass filter	Amp - Block diagram eristics of an Op Amp
UNIT II	APPLICATIONS OF OPERATIONAL AMPLIFIERS	9
converte	plications: Inverting and Non inverting Amplifiers – Differentiator – Integrat - Instrumentation amplifier ar Applications: Clippers and Clampers - Precision rectifier - Log and Antilog ar	-
Compara	e Multivibrators - Triangular wave generator - Sine wave generators.	
UNIT III	PLL	6
Voltage C	ontrolled Oscillator- Closed loop analysis of PLL – PLL Applications - Frequenc	y synthesizers.
UNIT IV	ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS	9
Current	vitches - High speed sample and hold circuits and sample and hold ICs - Ty driven DAC - Switches for DAC- A/D converter Flash - Single slope - D ation - Delta Sigma Modulation - Voltage to Time converters.	
UNIT V	SPECIAL FUNCTION ICs	9
	r: Astable and Monostable Multivibrators, Schmitt trigger Voltage regulators hed mode types - Frequency to Voltage converters - Tuned amplifiers - Video	
op-amp.		
		TOTAL: 45 PERIODS
)KS:	TOTAL: 45 PERIODS
op-amp. TEXT BOO 1. D	DKS: . Roy Choudhry and Shail B. Jain, "Linear Integrated Circuits"- (d/e), New Age 011.	
op-amp. TEXT BOO 1. D 2 2. 2	. Roy Choudhry and Shail B. Jain, "Linear Integrated Circuits"- (d/e), New Age	International Pvt. Ltd,
op-amp. TEXT BOO 1. D 2 2. 2 (0	. Roy Choudhry and Shail B. Jain, "Linear Integrated Circuits"- (d/e), New Age 011. . R. Gayakwad, Op-amps and Linear Integrated Circuits (d/e), PHID. A. Bell, So	International Pvt. Ltd,
op-amp. TEXT BOO 1. D 2. 2 (0 REFEREN	. Roy Choudhry and Shail B. Jain, "Linear Integrated Circuits"- (d/e), New Age 011. . R. Gayakwad, Op-amps and Linear Integrated Circuits (d/e), PHID. A. Bell, So I/e), PHI, 2009.	International Pvt. Ltd, lid state Pulse Circuits
op-amp. TEXT BOO 1. D 2 2. 2 (0 REFEREN 1. S	. Roy Choudhry and Shail B. Jain, "Linear Integrated Circuits"- (d/e), New Age 011. . R. Gayakwad, Op-amps and Linear Integrated Circuits (d/e), PHID. A. Bell, So I/e), PHI, 2009. CE BOOKS:	International Pvt. Ltd, lid state Pulse Circuits /e) TMH, 2003.
op-amp. TEXT BOO 1. D 2 2. 2 ((REFEREN 1. S 2. R	. Roy Choudhry and Shail B. Jain, "Linear Integrated Circuits"- (d/e), New Age 011. . R. Gayakwad, Op-amps and Linear Integrated Circuits (d/e), PHID. A. Bell, So d/e), PHI, 2009. CE BOOKS: . Franco, Design with Operational Amplifiers and Analog Integrated Circuits (c,	International Pvt. Ltd, lid state Pulse Circuits /e) TMH, 2003. uits, PHI, 1996.

COURSE CATEGORY: Programme Core

PREAMBLE: The functioning of a power system depends significantly on efficient and reliable protection schemes. This course covers a refreshed pedagogy of Power System Protection and Switchgear technology covering the contemporary protection system, relay & breaker principles, types, operations and applications.

PREREQUISITE COURSES: DC Machines and Transformer, Transmission and Distribution

RELATED COURSES: Nil

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Understand the essential qualities of a reliable protective system and protection terminologies
- Explain the operating principles of various relays based upon technology and functional requirements
- Understand Protection of electrical power apparatus generation, transmission and distribution system
- Understand the arcing phenomena, arc quenching and breaking in circuit breakers
- Classify different circuit breaker principles and operation

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	List out essential qualities of a protective system and protection terminologies.	К2
CO2	Understand the operating principles of electromagnetic relays.	К2
CO3	Understand the concept of microprocessor based numerical protective relays	К2
CO4	Summarize protection schemes for generation, transmission and distribution system	К2
CO5	Explain the principle of different Circuit breakers and its operation	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L											Н	
CO2	Н	L	L		L	L	L					L	Н	L
CO3	Н	L	L		Н	L	L					L	Н	L
CO4	Н	L	L		L	L	L					L	Н	L
CO5	Н	L	L			L	L					L	Н	L

COURSI	E CONTENT:						
UNIT	INTRODUCTION	9					
	leas of short circuit currents and relay protection - basic terminology - essent ive relay - The universal relay - torque equation, RX diagram - CT, PT & applications	ial qualities of a					
UNIT I	I ELECTROMAGNETIC RELAYS	9					
	nagnetic relays–operating principles of relays-Over current relays –directional over ender the relays - directional over the relays - under frequency and negative sequence relays - mho re	•					
UNIT I	II MICROPROCESSOR BASED NUMERICAL RELAYS	9					
Introduction- IC elements and circuits for interfaces – A/D converter, Analog multiplier, S/H Overcurrent relays-Impedance relay-Directional relay- Reactance relay- Mho relay.							
UNIT I	V PROTECTION OF POWER APPARATUS	9					
	tor protection - Transformer protection – Bus bar protection - Feeder protect	ion - A.C. Moto					
protect	ion and protection of transmission lines - Relay coordination of a sample system						
UNIT	/ CIRCUIT BREAKERS	9 ng and Capacitive					
UNIT N Arcing current	CIRCUIT BREAKERS phenomena and arc quenching - circuit breaker rating— RRRV - Current Choppir breaking — Construction and operation: Oil minimum circuit breakers, Air blast and SF6 circuit breakers.	ng and Capacitive circuit breakers					
UNIT V Arcing current Vacuum	CIRCUIT BREAKERS phenomena and arc quenching - circuit breaker rating— RRRV - Current Choppin breaking — Construction and operation: Oil minimum circuit breakers, Air blast and SF6 circuit breakers. TC	ng and Capacitive					
UNIT V Arcing current Vacuum TEXT BO	CIRCUIT BREAKERS phenomena and arc quenching - circuit breaker rating— RRRV - Current Choppin breaking — Construction and operation: Oil minimum circuit breakers, Air blast and SF6 circuit breakers. TC	ng and Capacitive circuit breakers DTAL: 45 PERIODS					
UNIT V Arcing current Vacuum TEXT BC 1.	/ CIRCUIT BREAKERS phenomena and arc quenching - circuit breaker rating- RRRV - Current Choppir breaking - Construction and operation: Oil minimum circuit breakers, Air blast and SF6 circuit breakers. TC DOKS: B.Ravindranath and N.Chander, "Power Systems Protection and Switchgear", W	ng and Capacitive circuit breakers DTAL: 45 PERIODS /iley Eastern Lto					
UNIT V Arcing current Vacuum TEXT BO 1. 2.	 CIRCUIT BREAKERS phenomena and arc quenching - circuit breaker rating- RRRV - Current Choppir breaking - Construction and operation: Oil minimum circuit breakers, Air blast and SF6 circuit breakers. TC DOKS: B.Ravindranath and N.Chander, "Power Systems Protection and Switchgear", W 1977. Badri Ram and Viswakarma, D.N., "Power System Protection and Switch Gear", Total Content of the system Protection P	ng and Capacitive circuit breakers DTAL: 45 PERIODS /iley Eastern Lto					
UNIT V Arcing current Vacuum TEXT BO 1. 2. REFERE	 CIRCUIT BREAKERS phenomena and arc quenching - circuit breaker rating- RRRV - Current Choppir breaking - Construction and operation: Oil minimum circuit breakers, Air blast and SF6 circuit breakers. TC DOKS: B.Ravindranath and N.Chander, "Power Systems Protection and Switchgear", W 1977. Badri Ram and Viswakarma, D.N., "Power System Protection and Switch Gear", Publishing Company Ltd., 2001. 	ng and Capacitive circuit breakers DTAL: 45 PERIODS /iley Eastern Ltd Tata McGraw-Hi					
UNIT V Arcing current Vacuum TEXT BO 1. 2. REFERE 1.	 CIRCUIT BREAKERS phenomena and arc quenching - circuit breaker rating– RRRV - Current Choppir breaking – Construction and operation: Oil minimum circuit breakers, Air blast and SF6 circuit breakers. TC 	ng and Capacitiv circuit breakers DTAL: 45 PERIOD /iley Eastern Ltc Tata McGraw-Hi					
UNIT V Arcing current Vacuum TEXT BO 1. 2. REFERE 1.	 CIRCUIT BREAKERS phenomena and arc quenching - circuit breaker rating- RRRV - Current Choppin breaking - Construction and operation: Oil minimum circuit breakers, Air blast and SF6 circuit breakers. TC DOKS: B.Ravindranath and N.Chander, "Power Systems Protection and Switchgear", W 1977. Badri Ram and Viswakarma, D.N., "Power System Protection and Switch Gear", Publishing Company Ltd., 2001. NCE BOOKS: C.L.Wadhwa, "Electric Power Systems", New Age International (P) Ltd publishers, 19 S.P.Patra, S.K.Babu and S.Choudhuri, "Power Systems Protection", Oxford and IB 	ng and Capacitive circuit breakers DTAL: 45 PERIODS /iley Eastern Lto Tata McGraw-Hi					
UNIT V Arcing current Vacuum TEXT BO 1. 2. REFERE 1. 2.	 CIRCUIT BREAKERS phenomena and arc quenching - circuit breaker rating- RRRV - Current Choppir breaking - Construction and operation: Oil minimum circuit breakers, Air blast and SF6 circuit breakers. TC 	ng and Capacitiv circuit breakers DTAL: 45 PERIOD /iley Eastern Lto Tata McGraw-Hi 983. M Publishing Co					
UNIT V Arcing current Vacuum TEXT BO 1. 2. REFERE 1. 2. 3.	 CIRCUIT BREAKERS phenomena and arc quenching - circuit breaker rating- RRRV - Current Choppir breaking - Construction and operation: Oil minimum circuit breakers, Air blast and SF6 circuit breakers. TCC DOKS: B.Ravindranath and N.Chander, "Power Systems Protection and Switchgear", W 1977. Badri Ram and Viswakarma, D.N., "Power System Protection and Switch Gear", Publishing Company Ltd., 2001. NCE BOOKS: C.L.Wadhwa, "Electric Power Systems", New Age International (P) Ltd publishers, 19 S.P.Patra, S.K.Babu and S.Choudhuri, "Power Systems Protection", Oxford and IB 1983. Sunil S. Rao, "Switchgear and protection", Khanna publishers, New Delhi, 1986. Lewis Blackburn "Protective Relaying - Principles and Applications", Second Edit	ng and Capacitiv circuit breakers DTAL: 45 PERIOD Viley Eastern Lto Tata McGraw-Hi 983. M Publishing Co tion, Dekker Inc					

INTEGRATED COURSE

	JRSE C							TITLE:				L	Т	Р	С
	211EE				l	-		NETIC				2	0	2	3
COUR	SE CA	TEGOR	Y: Prog	ramme	e Core								11		
		-	urpose ineto st			-			s with a	an intro	duction	to the fu	undan	nent	als of
PRERI	EQUIS		URSES:	Engine	ering P	hysics									
RELAT	TED CC	OURSES	S: AC M	achine	s, Spec	ial Elec	trical N	1achine	S						
COUR	SE ED	UCATIO	ONAL O	BJECTI	VES:										
The o	bjectiv	es of t	he cour	rse are	to,										
•										potenti	al, flux,	charge c	lensiti	es, s	tatic
			ields, st		0,					alaatra	nognoti	fielde			
•	•		-					-	ing the		nagneti	L Helus.			
<u></u>						- emab									
		TCOM		oletion	of the i	COURSE	studer	nts will	be able	to:					
-		cccoon			or the	course,	Studer								
CO Nos.					Course	Outco	mes					edge Le d Bloom	-		
											100150				,,
CO1	Ex	plain a	bout el	ectrost	atics a	nd sour	ces of	electric	fields			K	2		
CO2	Ap	ply the	e knowl	edge o	f electr	ostatic	s for di	electric	study			K	3		
CO3	Ex	plain a	bout m	agneto	statics	and so	urces c	of magn	etic fie	ds		K	2		
CO4	M	ake use	e of Fini	ite Elen	nent M	ethod	to solve	e field E	quatio	ns		K	3		
CO5	D5 Explain about Electromagnetic waves in in free space, lossy and lossless dielectrics and their importance K2														
CORR	ELATIO	ON OF	COs W	ITH PO	s AND I	PSOs									
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2
CO1	Н	Н	L		М								Н		
CO2	H H L M											н			
						1		1							

CO3

CO4

CO5

L

L

L

Μ

Н

Н

Н

Н

Н

Н

н

Н

Н

COURSE CO	DNTENT:								
UNIT I	ELECTROSTATICS-I	6							
	d effects of electromagnetic fields – Coordinate Systems – Vector fields –G rems and applications - Coulomb's Law – Electric field intensity – Gauss's la								
UNIT II	ELECTROSTATICS-II	6							
	ential – Electric field and equipotential plots, Uniform and Non-Uniform form to conductors, dielectrics – Dielectric strength – Boundary conditions, Poi								
UNIT III	MAGNETOSTATICS 6								
	orentz force, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit conductors - circular loop, infinite sheet of current - Boundary conditions.								
UNIT IV	ELECTRODYNAMIC FIELDS AND SOLUTION OF FIELD EQUATIONS	6							
,	aw – Transformer and motional EMF – Displacement current -Maxwell's en I form) – Relation between field theory and circuit theory – Applications.	quations (differential							
UNIT V	ELECTROMAGNETIC WAVES	6							
-	netic wave generation and equations – Wave parameters; velocity, n constant – Waves in free space, lossy and lossless dielectrics- skin dep								
		TOTAL: 30 PERIODS							
	ERIMENTS (30 PERIODS)								
	alyzing flux distribution in core type transformer								
	alyzing flux distribution in Shell type transformer								
	alyzing Flux density of stepper motor								
	alyzing the current distribution in the generator								
	ulombs law with two charged objects								
	ctromagnetic induction								
	arged particle in magnetic field								
8. Stu	dy of force acting on the conductor in DC motor								
9. Equ	ipotential and electric field of two charges								
	arged particle in an electric field								
TEXT BOOK									
	thew N. O. Sadiku, 'Principles of Electromagnetics', 4 th Edition, Oxford Univ	versity Press in 3. Firs							
	ia edition, 2009.	unio a Duitorta Linaita d							
	nutosh Pramanik, 'Electromagnetism – Theory and Applications', PHI Lear	ning Private Limited							
REFERENCE	w Delhi, Second Edition-2009.								
	eph. A.Edminister, 'Schaum's Outline of Electromagnetics, Third Edition	n (Schaum's Outling							
Ser	ies), Tata McGraw Hill, 2010								
	liam H. Hayt and John 1. Buck, 'Engineering Electromagnetics', Tata McC tion, 2011.	Graw Hill 8 th Revised							
3. Kra	us and Fleish, 'Electromagnetics with Applications', McGraw Hill Internation, 2010.	itional Editions, Fifth							
	K. Cheng, Field and Wave Electromagnetics, Addison-Wesley, 1992								

LABORATORY COURSES

со	URSE	CODE:				COL	JRSE TI	TIF			L	Т	Р	С
	0211E				CIR				AB		0	0	2	1
COURS	SE CAT	EGORY:	Progra	imme C	ore									
		This cou				e stude	nts ver	ify netv	vork th	eorem	s practi	cally a	nd unde	erstand
circuits	s with	three	ohase,	and tr	ansien	ts. It is	s also a	aimed	to gaiı	n know	ledge	on cha	racteris	stics of
electro														
		URSES:				entation	n Lab, P	ower E	lectror	nics Lab				
	-	JCATION es of the			-									
	-	y the ne												
		erstand				n nort	networ	rk narar	neters					
•		erstand				•		•		•				
COURS				nuccen		variou	5 ciccti	onic ac	vices.					
Upon t	he su	cessful	comple	tion of	the co	urse, st	udents	s will be	able t	o:				
со				Cou		•••••	_			Kn	owledg	e Leve	l (Based	l on
Nos				Cou	rse Ou	tcomes	5			rev	ised Bl	oom's	Taxono	my)
CO1	. 1	Execute	and ve	rify net	work tł	neorem	IS					K3, S2		
CO2	2	Build the	e two p	ort net	works							K3, S2		
CO3	s I	Perform	power	measu	remen	t in eleo	ctrical s	system				K3, S2		
CO4	L	Perform	charac	teristic	s of PN	junctio	on diod	e and B	JT			K3, S2		
CO5		Demons [.] MOSFET	trate t	he V-I	charac	teristic	s of UJ	IT, JFET	and			K3, S2		
CORRE	LATIC	N OF CO	Ds WIT	H POs A	AND PS	Os								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	H	Н	M	M	L				M	L		L	M	H
CO2	H	Н	M	M	L				M	L		L	M	H
CO3	Н	Н	М	М	L				М	L		L	М	Н
CO4	Н	Н	М	М	L				Μ	L		L	М	Н
CO5	Н	Н	М	М	L				М	L		L	М	Н
LIST O	F EXPE		rs:											
							Cir	cuits						
1.	Veri	ication o	of Thev	enin's t	heorer	n.								
2.		ication of												
3.	Mea	suremer	nt of tw	o port	netwo	rk para	meters							
4.		sient res												
5.	5. Power and power factor measurement by two wattmeter method.													

<u>Devices</u>

- 6. V-I characteristics of PN junction diode.
- 7. Characteristics of Common Emitter Configuration of Transistor
- 8. Characteristics of MOSFET
- 9. Characteristics of UJT
- 10. Characteristics of JFET

COURSE CODE: COURSE TITLE: 10211EE302 DC MACHINES & TRANSFORME									L	T	Р	C
102	211EE302	DC M	ACHINE	S & TRANS	FORM	IERS LA	В		0	0	2	1
OURSE	CATEGORY: Pro	ogramme Core	9									
	LE: The course	•					nd tran	sforn	ners.	It dea	ıls with	n loa
REREQU	UISITE COURSES	S: Basic Electri	ical & Ele	ectronics Er	nginee	ering La	b					
ELATED	COURSES: Soli	d State Drives	, AC Ma	chines, Line	ear Co	ntrol S	ystems	, Spe	cial E	lectric	al Mac	chin
OURSE	EDUCATIONAL	OBJECTIVES:										
he obje	ctives of the co	urse are to,										
	Expose the stu		e opera	ation of D	C ma	chines	and	Tran	sforn	ners a	and pr	rovi
	experimental sk	ills										
	OUTCOMES:		C (1)				1					
Upor	n the successful	completion o	of the co	urse, stude	nts wi	li be at	ple to:					
CO Nos. Course Outcomes Knowledge Level (Based On revised Bloom's												
		Cou	rse Outo	comes					on re	-	Bloom	
	Perform the c				Genera	ator			on re	vised E	Bloom' my)	
Nos.	Perform the o	characteristic	study of	DC Shunt (s		on re	vised E axono	Bloom' my) 3	
Nos. CO1		haracteristic	study of study of	DC Shunt C			s		on re	K3, S	Bloom ' my) 3	
Nos. CO1 CO2	Perform the c	characteristic characteristic oad character speed contro	study of study of ristic of I ol methe	^E DC Shunt C ^E DC compo DC motors. ods for DC	und m moto	achine	also		on re	K3, S K3, S	Bloom' my) 3 3	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н		М					М	L		L	Н	М
CO2	Н	Н		М	L				М	L			Н	М
CO3	Н	Н		М	L				М	L			Н	М
CO4	Н	Н		М	L				М	L		L	Н	М
CO5	Н	Н		М					М	L			Н	М

- 1. Open circuit and load characteristics of D.C separately excited shunt generator
- 2. Open circuit and load characteristics of D.C self-excited shunt generator
- 3. Load characteristics of D.C. compound generator with differential and cumulative connection.
- 4. Load characteristics of DC compound motor
- 5. Load characteristics of D.C shunt motor
- 6. Load characteristics of D.C series motor
- 7. Swinburne's test in DC machine
- 8. Speed control of D.C shunt motor
- 9. Open circuit and short circuit tests on single phase transformer
- 10. Load test on three phase transformer
- 11. Study of DC motor starters

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10211EE303	AC MACHINES LAB	0	0	2	1

COURSE CATEGORY: Programme Core

PREAMBLE: The course provides the information to obtain the various performance characteristics of Three phase induction motors, single phase induction motors and synchronous machines by conducting different test methods. It also gives the information on speed control of slip ring induction motor.

PREREQUISITE COURSES: DC Machines and Transformer

RELATED COURSES: Solid State Drives, Special Electrical Machines

COURSE EDUCATIONAL OBJECTIVES:

The objective of the course is to,

• Understand the various performance characteristics of Induction motors and Synchronous machines.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
CO1	Perform OC and SC tests on three phase Alternator to determine regulation using EMF, MMF, ZPF and slip test methods.	K3, S2
. CO2	Execute load test on Synchronous motor for identifying V and inverted V curves.	K3, S2
CO3	Perform OC and SC tests on three phase Induction motor for identifying performance characteristics through circle diagram.	K3, S2
CO4	Build the equivalent circuit parameters of Induction motors using No load test and Blocked rotor test.	K3, S2
CO5	Execute speed control in slip ring induction motor.	K3, S2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н		М					М	L			Н	L
CO2	Н	Н		М					М	L			Н	L
CO3	Н	Н		М					М	L			Н	L
CO4	Н	Н		М					М	L			Н	L
CO5	Н	Н		М	L				М	L			Н	L

- 1. Determination of voltage regulation of three phase alternator by EMF and MMF methods
- 2. Determination of voltage Regulation of three phase alternator by ZPF method
- 3. V and Inverted V curves of three phase synchronous motor
- 4. Load test on three-phase induction motor
- 5. Determination of equivalent circuit parameters of three phase induction motor
- 6. Predetermine the performance characteristics of three phase induction motor using circle diagram
- 7. Speed control of three phase slip ring induction motor
- 8. Load test on single-phase induction motor
- 9. No load and blocked rotor test on single-phase induction motor
- 10. Study of induction motor starters.

	JRSE CODE:	COURSE TITLE:	L	Т	Р	C
10	211EE304	CONTROL & INSTRUMENTATION LAB	0	0	2	1
OURSE	CATEGORY: Progr	ramme Core			•	
		his lab is to fortify the students with an adequi quantities and also the expertise in Digital simula		•		in tł
REREQ		Circuit Analysis Lab				
RELATED	COURSES: DC Ma	achines & Transformers Lab				
OURSE	EDUCATIONAL OI	BJECTIVES:				
he obje	ctives of the cours	se are to,				
•		surement of displacement, resistance, inductanc to AC, DC bridges measurement.	e, torque	e and a	ngle	
•	 Design the cor 	npensators.				
•	 Determine the 	transfer function of Electrical Machines.				
COURSE						
	OUTCOMES:					
Upor		ompletion of the course, students will be able to:				
Upor CO Nos.		ompletion of the course, students will be able to: Course Outcomes	Know	-	evel (Ba Bloom omy)	
со	n the successful co		Know	revised	Bloom omy)	
CO Nos.	n the successful co	Course Outcomes	Know	revised Taxon	Bloom omy) S3	
CO Nos.	Demonstrate th Execute the des Perform measure	Course Outcomes the transfer function of Electrical Machines	Know	revised Taxon K3,	Bloom omy) S3 S2	
CO Nos. CO1 CO2	n the successful co Demonstrate th Execute the des Perform measur and frequency o	Course Outcomes the transfer function of Electrical Machines hign of first and second order and compensators rement of phase difference, voltage, current	Know	revised Taxon K3, K3,	Bloom omy) S3 S2 S2	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	М	М	М				М	L	L	L	Н	М
CO2	Н	Н	М	М	М				М	L	L	L	Н	М
CO3	Н	Н		М	L				М	L		L	Н	М
CO4	Н	Н	М	М	L				М	L		L	Н	М
CO5	Н	Н		М	L				М	L		L	Н	М

- 1. Design of P, PI and PID controller
- 2. Synchro-transmitter- receiver and characteristics
- 3. Determination of transfer function of DC servo motor
- 4. Determination of transfer function of AC servo motor
- 5. Design of Lag, Lead and Lag-Lead Compensators
- 6. Bridge Networks –AC and DC Bridges
- 7. Dynamics of Sensors/Transducers
 - a. Temperature
 - b. Pressure
 - c. Displacement
 - d. Optical
 - e. Strain
 - f. Flow
- 8. Instrumentation amplifier
- 9. Analog to digital and Digital to analog converter
- 10. Inverting, Non-inverting and differential amplifiers using op-amp

COU	RSE C	ODE:				COL	JRSE TI	TLE:			l	. Т	P	С
102	211EE	305	I	MICRO	PROCE	SSOR 8	& MICR	OCONT	FROLLE	RS LAE	3 (0	2	1
COURSE	CATE	GORY:	Progra	amme (Core									
PREAME their kn provides help the technolo	iowlec s hand e stud	lge or s-on e	n proce experie	essor a nce to	architeo interfa	cture a	and the device	e prog s. The	rammi skills a	ng skil Icquire	ls. Thi d throu	s labo ugh the	ratory e expe	course
PREREQ	UISITE	COUF	RSES: E	lectron	ic Devi	ces & C	Circuits	Lab.						
RELATED	D COU	RSES:	Project	Work										
COURSE	EDUC		IAL OB	JECTIV	ES:									
The obje	ectives	of the	course	e are to),									
•	Give h	ands c	on expe	rience	in 8085	5 assem	nbly lan	nguage	progra	mming				
•	Give h	ands o	on expe	rience	in perij	pheral i	interfac	cing wit	th 8085	5 and 8	051.			
•	Introd	uce 80	51 mic	rocont	roller p	rogram	nming.							
COURSE	ουτα	OMES	:											
Upo	n the s	succes	sful cor	mpletic	on of th	e cours	se, stuc	lents w	ill be a	ble to:				
CO Nos.					Cour	se Out	comes					domai revise	of lear n (Base ed Bloo conomy	ed on m's
CO1					-			rams f ruction				I	<3, S3	
CO2								or inter / Displ				ł	<2, S2	
CO3	ор	eratio	ns, Ti		Counter			rams f rrupt			etic sing		<3 <i>,</i> S3	
CO4							-	or inter ix/Keyb	-		vith	I	<2, S2	
CO5					•			rams f nstructi				I	<3, S3	
		ocesso	or.											
CORREL	pr	ocesso		H POs /	AND PS	Os							•	
	pr	ocesso		H POs A PO4 M	AND PS PO5 M	Os PO6	PO7	PO8	PO9 M	PO10	PO11	PO12	РSO1 Н	PSO2 M

CO1	Н	Μ	Μ	Μ	М		Μ	L	L	L	Н	М
CO2	Н	Μ	Μ	Μ	Μ		Μ	L	L	L	Н	М
CO3	Н	Μ		Μ	L		Μ	L		L	Н	М
CO4	Н	М	Μ	М	L		Μ	L		L	Н	М
CO5	Μ	М		М	L		М	L		L	Н	М

Assembly Language Programming With 8085:

- 1. Arithmetic Operations of two 8-bit numbers (Addition, Subtraction, Multiplication & Division).
- 2. Arranging an array of data (ascending order & descending order).
- 3. Code Conversion (BCD to HEX, HEX to BCD, HEX to ASCII & ASCII to HEX).
- 4. Interfacing (8251 (USART), ADC/DAC, 8253 (Timer IC) & 8279 (Keyboard/Display Controller).

Assembly Language Programming With 8051 Microcontroller:

- 5. Arithmetic Operations of two 8-bit numbers (Addition, Subtraction, Multiplication & Division).
- 6. Verify Timer/ Counter.
- 7. Verify Interrupt Handling.
- 8. Interfacing (Stepper Motor, DC Motor, ADC/DAC, Matrix/Keyboard & LCD).

Assembly Language Programming with ARM Processor:

- 9. Arithmetic Operations of two 8-bit numbers (Addition, Subtraction, Multiplication & Division).
- 10. Code Conversion.

CO	URSE (CODE:				COU	IRSE TI	TLE:			L	Т	Р	С
10	211EE	306		ANA	LOG A		GITAL E	LECTR	ONICS	LAB	0	0	2	1
COURS	E CAT	EGORY	: Progr	amme	Core						1			
			-				-		-		-	-		ctronic
		skills ga		-				-				eir pro	jects.	
		E COU		Basic El	ectroni	cs and	Measu	iremen	it Engir	neering				
COURS		JRSES:												
The ob	-		-		-									
•	-	rstand				plifier	and os	cillator	circuit	s				
•		rstand	•			•				-				
•		n comb			•	U	0							
COURS	E OUT	COMES	5:											
Upon t	he suc	cessful	compl	etion o	f the c	ourse,	studen	ts will	be able	e to:				
со				Cou	rse Ou	tcome	s				owledg		-	
Nos.	,									revi	ised Bl	oom's	Taxon	omy)
CO1	D	esign a	and ar	nalyze	the p	erform	ance d	of amp	olifier			K4,S3		
	ci	rcuits										к ч ,55		
CO2	D	esign a	nd rea	lize the	Oscill	ator ci	rcuits					K4,S3		
CO3	U	ndersta	and the	e conce	pt of lo	ogic ga	tes					K1,S1		
CO4	U	ndersta	and ar	nd real	ize th	e com	binatio	nal cii	rcuits			K1 C1		
04	u	sing log	gic gate	s								K1,S1		
CO5	D	esign a	nd imp	lemen	t count	er circ	uits					K4,S3		
CORRE	LATIO	N OF C	Os WIT	'H POs	AND P	SOs								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	М	L					М	L			М	Н
CO2	Н	М	Μ	L					М	L			М	Н
CO3	Н	М	М	L					М	L		L	Μ	Н
CO4	Н	М	М	L					М	L		L	Μ	Н
CO5	Н	Μ	Μ	L					Μ	L		L	Μ	Н
LIST O	F EXPE	RIMEN	TS:											
	Anal	og Circ	uits:											
1.	Frequ	uency a	nalysis	of con	nmon e	emitter	amplif	ier						
2.	Desig	n of Cla	ass B p	ower a	mplifie	rs	-							

- 3. Design and verification of RC phase shift oscillator
- 4. Design of UJT relaxation oscillator
- 5. Design and implementation of Astable Multivibrator using 555 timer IC Digital Circuits:
- 6. Realization of digital logic gates
- 7. Implementation of adder and subtractor circuits
- 8. Design and implementation of code converters using logic gates
- 9. Design of combinational circuits using multiplexer
- 10. Design and implementation of counters

COURSE	E CODE:		COUI	RSE TITLE:		L	Т	Р	С
10211	EE307		POWER EL	ECTRONICS LAB		0	0	2	1
OURSE CA	TEGORY: Pro	gramme Cor	e						
	: This lab int ntrol DC moto		•	power control and p	ower co	nver	sion te	chnique	s ar
REREQUIS	ITE COURSES	Electronic E	Devices & Cir	rcuits Lab.					
ELATED CO	OURSES: Pow	er System Si	mulation Lal	Э.					
he objectiv	UCATIONAL ves of the cou	urse are to,							
			•	wer conversion techn for machines	iques.				
OURSE OL Upon th		completion c	of the course	e, students will be abl	e to:				
CO Nos.		Co	ourse Outco	nes	K		-	evel (Ba l Bloom' omy)	
C01	Sketch th devices.	e characteri							
			istics of va	arious power switcl	ning		К2,	S2	
CO2	Demonstra	ite the conc e rectifiers.		arious power switcl			К2, К3,		
CO2 CO3	Demonstra three phas Show the	e rectifiers. working of	cept of work		and t of			S3	
	Demonstra three phas Show the single-phas inverters.	e rectifiers. working of se half & fi n the task of	cept of work power circ ull bridge in	ing of single phase uit and control circui	and t of hase		КЗ,	S3 S3	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		Μ	М							Μ	Μ		
CO2	Н		Н	Н		М					Н	Н	Μ	
CO3	М		М	М		М					М	М		
CO4	М	М		М		М			М		Μ	М		М
CO5	Н	Н	Н	Н		М			Н		Н	Н		

- 1. VI Characteristics of SCR, IGBT & MOSFET.
- 2. Single phase full converter feeding R, RL, RLE load.
- 3. Single phase semi converter feeding R, RL, RLE load.
- 4. Single phase dual converter.
- 5. MOSFET based step up and step-down chopper
- 6. IGBT based single phase PWM inverter.
- 7. Three phase IGBT based PWM inverter
- 8. Single phase AC voltage controller
- 9. Single phase cycloconverter
- 10. Three phase full converter.
- 11. Series resonant converter.

	URSE CODE:	COURSE TITLE:	L	Т	Р	C
10	D211EE308	POWER SYSTEM SIMULATION LAB	0			1
OURSE (CATEGORY: Program	nme Core	·			•
REAMBI	LE: This course teac	hes Modelling of Transmission Lines, and Sol	ution of	Load Flo	w analy	/sis
REREQU	IISITE COURSES: Cir	cuit Analysis Lab				
ELATED	COURSES: Power S	ystem Operation and Control				
OURSE E	EDUCATIONAL OBJ	ECTIVES:				
he objec	ctives of the course	are to,				
• U	Inderstand about tr	ansmission line parameters.				
• F	ormulate Z bus and	Y bus				
• D	evelop Load flow a	nalysis – GS and NR method				
• C	onstruct suitable m	odel for load frequency control				
• P	erform Short circuit	t analysis for the given power system networ	k			
• S						
	olve transient stabi	lity problem for the power system				
		lity problem for the power system tch schedule for the given power system				
• P	lan economic dispa DUTCOMES:	tch schedule for the given power system				
• P	lan economic dispa DUTCOMES:					
• P	lan economic dispa DUTCOMES:	tch schedule for the given power system	Kno	wledge n revise Taxoı	•	
• P COURSE (Upon CO	lan economic dispa OUTCOMES: the successful com	tch schedule for the given power system	Kno	n revise Taxoi	d Bloor	
• P COURSE (Upon CO Nos.	lan economic dispa OUTCOMES: the successful com Perform the calcu	tch schedule for the given power system pletion of the course, students will be able to Course Outcomes	Kno	n revise Taxoi K2	d Bloon nomy)	
• P COURSE (Upon CO Nos. CO1	lan economic dispa OUTCOMES: the successful com Perform the calcu	tch schedule for the given power system apletion of the course, students will be able to Course Outcomes ulation for transmission line parameters bus and perform load flow analysis	Kno	n revise Taxoi K2 K2	d Bloon nomy) , S2	
P OURSE Upon CO Nos. CO1 CO2	lan economic dispa DUTCOMES: the successful com Perform the calco Build Z bus and Y Perform Short cir	tch schedule for the given power system apletion of the course, students will be able to Course Outcomes ulation for transmission line parameters bus and perform load flow analysis	Kno	n revise Taxoi K2 K2 K3	d Bloon nomy) , S2 , S2	
P COURSE (Upon CO Nos. CO1 CO2 CO3	lan economic dispa DUTCOMES: the successful com Perform the calco Build Z bus and Y Perform Short cir	tch schedule for the given power system pletion of the course, students will be able to Course Outcomes ulation for transmission line parameters bus and perform load flow analysis ccuit analysis d frequency control on power system	Kno	n revise Taxoi K2 K2 K3 K2	d Bloon nomy) , S2 , S2 , S3	

•••••														
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	М	L	Н				L	L	L	L	Н	М
CO2	Н	Н	М	L	Н				L	L	L	L	Н	М
CO3	Н	Н	М	L	Н	L			L	L	L	L	Н	М
CO4	Н	Н	М	L	Н	L			L	L	L	L	Н	М
CO5	Н	Н	М	L	Н	L			L	L	L		Н	М
CO6	Н	Н	М	L	Н				L	L	L		Н	М

- 1. Calculation of transmission line parameters using MATLAB.
- 2. Voltage regulation and efficiency calculation of medium, long transmission line using MATLAB.
- 3. Formulation of Y bus and Z bus matrix using MATLAB.
- 4. Load flow analysis GS method using MATLAB.
- 5. Load flow analysis NR method using MATLAB.
- 6. Short circuit analysis on DC network analyzer.
- 7. Symmetrical component analyzer.
- 8. Transient stability analysis.
- 9. Load frequency control of single area and two area power system with MATLAB/Simulink.
- 10. Economic dispatch control using MATLAB.
- 11. Study of Microgrid

PROGRAMME ELECTIVE COURSES

List of Courses

S.NO.	COURSE CODE	COURSE NAME	L	т	Р	С
		POWER SYSTEMS DOMAIN				
1.	10212EE121	Power Quality Engineering	3	0	0	3
2.	10212EE122	High Voltage Engineering	3	0	0	3
3.	10212EE123	Advances in Power System	3	0	0	3
4.	10212EE124	Power Plant Engineering	3	0	0	3
5.	10212EE125	High Voltage Direct Current Transmission	3	0	0	3
6.	10212EE126	Load Forecasting and Generation Forecasting	3	0	0	3
7.	10212EE127	Load Dispatching	3	0	0	3
8.	10212EE128	Reactive Power Management	3	0	0	3
9.	10212EE129	Smart Grid	3	0	0	3
		POWER ELECTRONICS & DRIVES DOMAIN				
1.	10212EE130	Led Lighting Technology	3	0	0	3
2.	10212EE131	Flexible AC Transmission Systems	3	0	0	3
3.	10212EE132	Modern Power Converters	3	0	0	3
4.	10212EE133	Automotive Electrical and Electronics Systems	3	0	0	3
5.	10212EE134	Fundamentals of Electric and Hybrid Vehicles	3	0	0	3
6.	10212EE135	Special Electrical Machines	3	0	0	3
7.	10212EE136	Electromagnetic Interference and Compatibility	3	0	0	3
8.	10212EE137	Solid State Drives	3	0	0	3
		EMBEDDED SYSTEMS DOMAIN				
1.	10212EE138	Principles of Robotics	3	0	0	3
2.	10212EE139	Embedded Systems	3	0	0	3
3.	10212EE140	Embedded Control of Electric Drives	3	0	0	3
4.	10212EE141	VLSI System and Design	3	0	0	3
5.	10212EE142	Wearable Electronics	3	0	0	3
		INSTRUMENTATION & CONTROL DOMAIN				
1.	10212EE143	Virtual Instrumentation	3	0	0	3
2.	10212EE144	Digital Control Systems	3	0	0	3
3.	10212EE145	Introduction to Nonlinear Dynamical Systems	3	0	0	3
4.	10212EE146	Discrete Time Signal Processing	3	0	0	3
5.	10212EE147	Signals and Systems	3	0	0	3
6.	10212EE148	Soft Computing	3	0	0	3

S.NO.	COURSE CODE	COURSE NAME	L	т	Р	С
7.	10212EE149	Bio Medical Instrumentation	3	0	0	3
8.	10212EE150	Process Automation	3	0	0	3
		ENERGY DOMAIN				
1.	10212EE151	Utilization of Electrical Energy	3	0	0	3
2.	10212EE152	Energy Auditing and Management	3	0	0	3
3.	10212EE153	Electrical Safety and Safety Management	3	0	0	3
4.	10212EE154	Renewable Energy Sources	3	0	0	3
5.	10212EE155	Solar Electric Systems	3	0	0	3
6.	10212EE156	Wind Energy Conversion Systems	3	0	0	3
7.	10212EE157	Generation Planning	3	0	0	3
8.	10212EE158	Solar Photovoltaic Systems	3	0	0	3
		ELECTRONICS DOMAIN				
1.	10212EE159	Nano Electronics	3	0	0	3
2.	10212EE160	Green Electronics	3	0	0	3
3.	10212EE161	Automotive Electronics	3	0	0	3
4.	10212EE162	Vehicle Electronics	3	0	0	3
5.	10212EE163	Optoelectronic devices	3	0	0	3
6.	10212EE164	Electronic Circuit Simulation and PCB Design	3	0	0	3
7.	10212EE165	Medical Electronics	3	0	0	3
		INTEGRATED COURSES				
1.	10212EE201	Applied Soft Computing	2	0	2	3
2.	10212EE202	Switch Mode Power Supply Design and Development	2	0	2	3
3.	10212EE203	Electrical Machines (only for lateral entry students)	2	0	2	3
		LABORATORY COURSE	1	r	T	
1.	10212EE301	Voltage Stabilizer Fabrication	0	0	2	1

со		Course Outcomes		wledg sed on	e Leve revise								
		completion of the course, students will be able to:											
COURSE OI													
• Un	derstand the	power quality monitoring and its equipments											
• Exp	lain about h	armonic distortion and its control											
• Far	niliar with ov	ervoltage and its causes											
• Acc	juire knowle	dge in calculation of voltage sags and interruptions											
• Un	derstand abo	out basics of power system quality											
The objecti	ves of the co	urse are to,											
COURSE ED	UCATIONAL	OBJECTIVES:											
PREREQUIS	ITE COURSE	5: Power Electronics, Protection and Switchgear											
harmonics	and power q	uality monitoring											
PREAMBLE	: This cour	se covers an introduction to power quality, v	oltage	sags,	overvo	ltage,							
COURSE CA	TEGORY: Pr	ogramme Elective											
10212EE121POWER QUALITY ENGINEERING3003													
COURSE	L	Т	Р	C									

CO Nos.	Course Outcomes	(Based on revised Bloom's Taxonomy)
CO1	Explain about power system quality issues	К2
CO2	Calculate voltage sags and interruptions	К2
CO3	Have an insight on over voltages and its causes	К2
CO4	Explain about harmonic distortion and its control	К2
CO5	Illustrate the fundamentals of power quality monitoring and its equipments	К2

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Н	М	L								L	М	Н	L
Н	М	L								L	М	Н	L
Н	М	L								L	М	Н	L
Н	Μ	L								L	Μ	Н	L
Н	М	L								L	М	Н	L
	H H H	H M H M H M H M	H M L H M L H M L H M L	H M L H M L H M L H M L H M L	H M L H M L H M L H M L H M L	H M L Image: Constraint of the second	H M L Image: Constraint of the second	H M L Image: Constraint of the second	H M L Image: Constraint of the second	H M L I I I I I H M L I I I I I I H M L I I I I I I I H M L I I I I I I I H M L I	H M L I I I I I I H M L I I I I I I H M L I I I I I I H M L I I I I I I H M L I I I I I I H M L I I I I I I I	H M L I I I I I M H M L I I I I M H M L I I I I M H M L I I I I M H M L I I I I M H M L I I I I M	H M L I I I I M H H M L I I I I M H H M L I I I I I M H H M L I I I I I I I H M L I

UNIT I	INTRODUCTION TO POWER QUALITY	9
Wavefor	nd definitions – Overloading – Under voltage – Sustained Interru m distortion – Total Harmonic Distortion (THD) – Compute turers Associations (CBEMA) curve	_
UNIT II	VOLTAGE SAGS AND INTERRUPTIONS	9
Estimatin	of sags and interruptions – Estimating voltage sag performance - ig the sag severity – Mitigation of voltage sags – Active series compe and fast transfer switches	
UNIT III	OVERVOLTAGES	9
swells – S	of over voltages – Capacitor switching – Lightning – Ferro resonance Surge arresters – Low pass filters – Power conditioners – Lightning sters – Protection of transformers and cables – Computer analys nd EMTP	protection – Shielding –
UNIT IV	HARMONICS	9
	c distortion – Voltage and current distortion – Harmonic indices –	
characte	cial and industrial loads – Locating harmonic sources – Por ristics – Resonance – Harmonic distortion evaluation – Devices for n – Passive filters – Active filters – IEEE and IEC standards	ower system response
character	ial and industrial loads – Locating harmonic sources – Po ristics – Resonance – Harmonic distortion evaluation – Devices fo	ower system response
character distortion UNIT V Monitori equipme	tial and industrial loads – Locating harmonic sources – Po ristics – Resonance – Harmonic distortion evaluation – Devices for n – Passive filters – Active filters – IEEE and IEC standards	ower system response or controlling harmonic 9 - quality measurement
character distortion UNIT V Monitori equipme	tial and industrial loads – Locating harmonic sources – Por ristics – Resonance – Harmonic distortion evaluation – Devices for n – Passive filters – Active filters – IEEE and IEC standards POWER QUALITY MONITORING ng considerations – Power line disturbance analyzer – Power nt – Harmonic / spectrum analyzer – Flicker meters – Disturbance and	ower system response or controlling harmonic 9 - quality measurement
character distortion UNIT V Monitori equipme	tial and industrial loads – Locating harmonic sources – Por ristics – Resonance – Harmonic distortion evaluation – Devices for n – Passive filters – Active filters – IEEE and IEC standards POWER QUALITY MONITORING ng considerations – Power line disturbance analyzer – Power nt – Harmonic / spectrum analyzer – Flicker meters – Disturbance and stem for power quality monitoring	ower system response or controlling harmonic 9 r quality measurement nalyzer – Applications or
character distortion UNIT V Monitorir equipme expert sy TEXT BOO 1. N	tial and industrial loads – Locating harmonic sources – Por ristics – Resonance – Harmonic distortion evaluation – Devices for n – Passive filters – Active filters – IEEE and IEC standards POWER QUALITY MONITORING ng considerations – Power line disturbance analyzer – Power nt – Harmonic / spectrum analyzer – Flicker meters – Disturbance and stem for power quality monitoring	ower system response or controlling harmonic 9 r quality measurement nalyzer – Applications o TOTAL: 45 PERIODS
character distortion UNIT V Monitorir equipme expert sy TEXT BOO 1. N P 2. R	tial and industrial loads – Locating harmonic sources – Por ristics – Resonance – Harmonic distortion evaluation – Devices for n – Passive filters – Active filters – IEEE and IEC standards POWER QUALITY MONITORING ng considerations – Power line disturbance analyzer – Power nt – Harmonic / spectrum analyzer – Flicker meters – Disturbance and stem for power quality monitoring DKS: Math H.J.Bollen, 'Understanding Power Quality Problems-Voltage Sa	ower system response or controlling harmonic 9 r quality measurement nalyzer – Applications or TOTAL: 45 PERIODS ag & Interruptions', IEEE
character distortion UNIT V Monitorir equipme expert sy TEXT BOO 1. N P 2. R S	 and industrial loads – Locating harmonic sources – Poristics – Resonance – Harmonic distortion evaluation – Devices for – Passive filters – Active filters – IEEE and IEC standards POWER QUALITY MONITORING ng considerations – Power line disturbance analyzer – Power nt – Harmonic / spectrum analyzer – Flicker meters – Disturbance and stem for power quality monitoring DKS: Math H.J.Bollen, 'Understanding Power Quality Problems-Voltage Sateress,2000 Roger C. Dugan, Mark F. McGranagham, Surya Santoso and H.Wayne 	ower system response or controlling harmonic 9 r quality measurement nalyzer – Applications o TOTAL: 45 PERIODS

COURSE TITLE:	L	Т	Р	С							
HIGH VOLTAGE ENGINEERING	3	0	0	3							
COURSE CATEGORY: Programme Elective											
PREAMBLE: This course covers specifications of insulation materials in liquid, gas and solid case and identifies the effect of extra high voltage on the environment. This module will prepare students for effective participation in the field of high voltage power systems within the electrical engineering environment.											
PREREQUISITE COURSES: Power System Analysis, Power Electronics											
	HIGH VOLTAGE ENGINEERING ogramme Elective covers specifications of insulation materials in liq extra high voltage on the environment. This modul n the field of high voltage power systems within	HIGH VOLTAGE ENGINEERING 3 ogramme Elective covers specifications of insulation materials in liquid, gas extra high voltage on the environment. This module will print the field of high voltage power systems within the element of high voltage power systems within the element.	HIGH VOLTAGE ENGINEERING 3 0 ogramme Elective covers specifications of insulation materials in liquid, gas and so extra high voltage on the environment. This module will prepare in the field of high voltage power systems within the electrical	COURSE TITLE: I HIGH VOLTAGE ENGINEERING 3 0 0 ogramme Elective covers specifications of insulation materials in liquid, gas and solid cases extra high voltage on the environment. This module will prepare studer in the field of high voltage power systems within the electrical engine							

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Understand the principles of theory of high voltage generation and measurements
- Understand the operation of high voltage power supplies for ac, dc, and impulse voltages
- Get familiar with various applications where high voltage field is used
- Understand breakdown of HV insulation (solid, Liquid and Gas)
- Understand lightning phenomena and HV Insulation Environmental pollution.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
C01	Explain the principles behind generating high DC-, AC- and impulse voltages	К2
C02	Develop equivalent circuit models of the different high voltage generators	К3
C03	Perform a dynamic response analysis of high voltage measurement system	К2
C04	Illustrate the breakdown strength of gas-filled insulation systems with simple geometries	К2
C05	Explain the principles, concepts, practices relevant to the application and hazards of electrostatic charges within the high voltage field.	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	М									L	Н	
CO2	Н	Μ	М	L								L	Н	L
CO3	Н	Μ	М	L								L	Н	L
CO4	Н	Μ	М									L	Н	L
CO5	Н	М	М	L		L					L	L	Н	

COURSE	CONTENT:					
UNIT I	OVER VOLTAGES AND INSULATION CO ORDINATIONS	9				
Planning a over volta	ion – Historical sketch – Comparison between AC and DC transmiss and modern trends. Causes of over voltages in transmission lines - ages - effects of over - voltages on power system equipment - surge absorbers and surge diverters – shielding - insulation coordir	lightning and switching protection against over				
UNIT II	IIT II GENERATION OF HIGH VOLTAGES AND HIGH CURRENT 9					
Walton ci	on of high AC voltages - cascaded transformers - generation of high rcuit and its qualitative analysis - generation of impulse and switch on of high impulse current - Tripping and control of impulse genera	ing surges - Marx circuit				
UNIT III	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS	9				
dividers a	nent of AC, DC impulse and switching surges using sphere gaps, pe and high speed CRO, op to Electronics method; Fiber optic me nents; partial discharge; dielectric loss measurement using bridges.	ethod; RIV and corona				
UNIT IV	ELECTRICAL BREAKDOWN IN GASES, SOLIDS AND LIQUIDS	9				
for break	processes - Townsend & Streamer theory - the sparking voltage - cdown - Breakdown in non-uniform fields and corona discha n in pure and commercial liquids and solids dielectrics	-				
UNIT V	HIGH VOLTAGE TESTING PRACTICES	9				
corona ar	DE specification for testing; correction factor; high voltage testired RIV testing measurement; Non-destructive insulation tests; sour EMI/EMC testing practice; corona and ESD testing techniques.					
		TOTAL: 45 PERIODS				
TEXT BOC	DKS:					
2. N	.L. Wadwa 'High Voltage Engineering' New Age International Pvt. Lt A.S.Naidu and N.Kamaraju, "High Voltage Engineering" Tata M ompany, New Delhi, 1983	•				
REFERENC	CE BOOKS:					
2. Jo	ubir Ray, 'An Introduction to High Voltage Engineering', PHI Learning ohn Kuffel and Peter Kuffel, 'High Voltage Engineering Fundame sevier, 2010	-				

				1					
COUR	SE CODE:	COURSE TITLE:	L	Т	Р	C			
1021	2EE123	ADVANCES IN POWER SYSTEM	3	0	0	3			
COURSE C	ATEGORY: Pro	ogramme Elective							
		aims to model the steady-state operation of large- oblems and analyze the stability	scale pow	ver sys	tems a	and			
PREREQU	ISITE COURSES	: Power System Analysis							
COURSE E	DUCATIONAL	OBJECTIVES:							
The object	tives of the cou	urse are to,							
• Ui	 Understand the harmonics and stability analysis of multi-machine system. 								
• Ga	ain knowledge	on power quality standards							
• Fa	miliar with ba	sics of grid and distribution systems and power systemed and power systemed and power systemed and power system	em netwo	rking.					
COURSE C	OUTCOMES								
Upon	the successful	completion of the course, students will be able to:							
СО			Knowle	•	•				
Nos.		Course Outcomes		vised I axono		's			
CO1	Explain the b	pasics of harmonics and sub harmonics oscillation		K2					
CO2	Discuss the S	Stability analysis of multi-machine system		K2					
CO3	Describe the devices	power quality standards, curves and monitoring		K2					
CO4	Outline the b	pasics of Grid and distribution systems		K2					

control

CO5

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L	L									М	Н	
CO2	Н	М	L									М	Н	L
CO3	Н	М	L					L				М	Н	L
CO4	Н	L	L									М	Н	
CO5	Н	L	L									М	Н	L

Summarize the power system networking, protection and

К2

COURSE O	CONTENT:	
UNIT I	HARMONICS & SUB HORMONICS OSCILLATION	9
	nding sub harmonics - sub harmonics in Ferro resonant circuit - distortion & oscillation – non-linear oscillations	sub harmonic protection
UNIT II	STABILITY OF MULTIMACHINE SYSTEM	9
	stabilization of multi machine power system with nontrivial trar stability analysis - excitation control for multi machine power syste	
UNIT III	POWER QUALITY	9
•	ality issues- standards - power quality monitoring devices - power o - CBEMA curves	quality conditioners for
UNIT IV	GRID BASED POWER SYSTEM	9
	grid-based distribution power generation system – Grid – tied putions applied to power distribution system.	oower system - smart grid
UNIT V	POWER SYSTEM NETWORKING	9
•	stem network reduction techniques - synchronization and kron rec n control – EMS - SCADA, RTU, PLC	luction in power networks
		TOTAL: 45 PERIODS
TEXT BOC	DKS:	
1. P.	Kundur, 'Power System Stability and Control', McGraw Hill Educati	on, 2007.
2. C	Sankaran, 'Power Quality" CRC Press, 2002.	
REFEREN	CE BOOKS:	
1. R	K.Rajput, 'A Text Book of Power System Engineering', Laxmi Public.	ation, 2011
2. Jo	os Arillaga, 'Power System Harmonics', 2 nd Edition, Kindle Edition, W	/iley, 2007

		CODE:						SE TITI					Т	Р	C	
10	212	EE124			P	OWEF	R PLAN	T ENG	INEER	ING		3	0	0	3	
COURS	E CA	TEGORY	': Prog	ramme	e Elect	ive										
		To und		d the	differ	ent m	ethods	of po	wer g	enerati	on; con	structio	n and	woi	rkin	
princip	e of	power p	lants													
PREREC	QUIS	ITE COU	RSES:	Basic E	Electro	nics ar	nd Mea	asuren	nent E	ngineer	ing					
		UCATIO	-		-											
The obj		es of th														
•		lerstand							ro pow	er plan	ts					
•		lain the				-										
•		lerstand		iesel a	nd no	n-conv	entior	ial pov	ver pla	ints						
		ITCOME		omolei	tion of	the co	ourse	studer	nts will	be able	e to:					
											1		1	(n	<u></u>	
со					Cours	e Outo	omes					wledge n revise		-		
Nos	•												Taxonomy)			
CO1		Explain about thermal power plants									K2 K2					
CO2		Describe the features of hydro power plant														
CO3		Outline the working of nuclear power plants								(2						
CO4		Explain			-								K2			
CO5		Summa	rize the	e princ	iple of	renev	vable p	ower	plants			k	(2			
CORRE	LATI	ON OF C	Os WI	TH PO	s AND	PSOs										
COs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	P	502	
CO1	Н	L				L		M				L	Н			
CO2	Н					L	м	L					Н			
CO3	Н					L		М					Н			
CO4	Н					L		L					Н			
CO5	н					M	н	L				M	н	_		
						141						141				
COURS	E CO	NTENT:														
UNITI										9						
Energy thermo Fluidize	dyna d be ns –	ources a amic cyc ed comb Boilers	les - V ustion	arious - Coal	comp handl	onent ing sys	of ste stems -	am po · Ash h	wer pl andlin	ant layo g syster	out - Pu ms - Foi	lverized ced dra	plant: coal ft and	s - I ourn ind	ers uce	

UNIT II	HYDRO ELECTRIC POWER PLANTS	9						
Layout -	Dams - Selection of water turbines - Types - Pumped storage hydel plants	5						
UNIT III	NUCLEAR POWER PLANTS	9						
Principles of nuclear energy - Basic nuclear reactions - nuclear power station –Types of Nuclear Reactor - Nuclear Waste disposal.								
UNIT IV	GAS AND DIESEL POWER PLANTS	9						
Types - Open and closed cycle gas turbine - Work output and thermal efficiency - Methods to improve thermal efficiency of gas turbine plant - Reheating - Intercooling - Regeneration and their combinations - Advantages and disadvantages - Comparison with steam power plants problems. Diesel engine power plant – component and layout.								
UNIT V	NON-CONVENTIONAL POWER GENERATION	9						
geother	Solar radiation estimation, solar energy collectors, OTEC, wind power plants, tidal power plants and geothermal resources, fuel cell, MHD power generation -principle, thermoelectric power generation, thermionic power generation.							
		TOTAL: 45 PERIODS						
TEXT BO	OOKS:							
1.	Bernhardt G.A.Skrotzki and William A. Vopat, 'Power Station Engineer Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 20 th reprint, 2002	•						
2.	P.K Nag, 'Power Plant Engineering' Tata McGraw Hill Second Edition, 2002	1.						
REFERE	NCE BOOKS:							
1.	G.D. Rai, 'An Introduction to Power Plant Technology', Khanna Publishers	, 1987.						
2.	 Arora and Domkundwar, 'A Course in Power Plant Engineering', Dhanpat Rai and Co. Pvt. Ltd., 2011. 							
3.	M.M. El-Wakil, 'Power Plant Engineering', McGraw Hill, 1985.							

COUR	SE CODE:	COURSE TITLE:	L	Т	Р	С		
1021	2EE125	HIGH VOLTAGE DIRECT CURRENT TRANSMISSIO	N 3	0	0	3		
COURSE C	CATEGORY: Pr	ogramme Elective		•				
		e aims to develop the skills in the area of HVDC parters, Reactive power control, and HVDC cables an			ion wi	th the		
PREREQU	ISITE COURSE	S: Power System Analysis and Power Electronics						
COURSE E	DUCATIONAL	OBJECTIVES:						
The objec	tives of the co	urse are to,						
	nderstand the ower transmis	e concept, planning of DC power transmission and sign.	comparis	son w	ith AC			
• A	cquire knowle	dge on characteristics of HVDC converters.						
• U	nderstand the	MTDC system and DC breakers with its characteri	stics					
• Fa	amiliar with re	active power and harmonics in HVDC						
• U	nderstand the	HVDC cables and Modelling of HVDC systems for	digital dy	namic	simula	ition		
COURSE C	DUTCOMES:							
Upon	the successfu	I completion of the course, students will be able to):					
CO Nos.	Course Outcomes Knowledge Level (Basec on revised Bloom's Taxonomy)							
CO1	Explain abo transmissio	out HVDC concept and planning of power n		K2				
CO2	Describe the characteristics of HVDC converters K2							

CO2	Describe the characteristics of HVDC converters	К2
CO3	Explain the MTDC system and DC breakers with its characteristics	К2
CO4	Summarize the reactive power and harmonics in HVDC	К2
CO5	Explain the HVDC cables and Modelling of HVDC systems for digital dynamic simulation	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	н	М										М	Н	L
CO2	Н	М										М	Н	L
CO3	н	М										М	Н	L
CO4	н	М	L									М	Н	L
CO5	н	Н	М		Н						L	М	Н	L

COURSE	CONTENT:	
UNIT I	BASIC CONCEPTS	9
Applicat	tion of DC Power transmission technology – Comparison of AC ion of DC transmission – Description of DC transmission systen ision – Modern trends in DC transmission.	
UNIT II	ANALYSIS OF HVDC CONVERTERS	9
Pulse nu	mber – Choice of converter configuration – Simplified analysis of G	raetz circuit – Converter
bridge c	naracteristics – Characteristics of a twelve-pulse converter – Detailed	analysis of converters.
UNIT III	MULTI TERMINAL HVDC SYSTEMS	9
	MTDC system – Comparison of series and parallel MTDC system – H rs – DC breakers – Characteristics and types of DC breakers	VDC insulation – DC line
UNIT IV	REACTIVE POWER AND HARMONICS IN HVDC	9
	of reactive power - static VAR system – Reactive power cont ion of harmonics – Types and design of various DC filters – interferer	_
UNIT V	HVDC CABLES AND SIMULATION OF HVDC SYSTEMS	9
– Dielec system s	tion of DC cables – Basic physical phenomenon arising in DC insulati tric stress consideration – Economics of DC cables compared with Au imulation – Philosophy and tools – HVDC system simulation – Mode ynamic simulation.	C cables. Introduction to
		TOTAL: 45 PERIODS
TEXT BC	OKS:	
	Padiyar, K. R., 'HVDC Power Transmission System', Wiley Eastern L Edition. 2015.	imited, New Delhi Third
2.	2. S. Rao, 'EHV-AC, HVDC Transmission and Distribution Engineering'	, Third Edition. 2013.
REFERE	ICE BOOKS:	
	Colin Adamson and Hingorani N G, 'High Voltage Direct Curren Garraway Limited, London, 1960.	t Power Transmission',
2.	Arrillaga, J., 'High Voltage Direct Current Transmission', Peter Pregrir	us, London, 1983.
	Rakosh Das Begamudre, 'Extra High Voltage AC Transmission International (P) Ltd., New Delhi, 1990.	Engineering', New Age

COURSE CODE:	COURSE TITLE:	L	Т	Ρ	С
10212EE126	LOAD FORECASTING AND GENERATION FORECASTING	3	0	0	3

COURSE CATEGORY: Programme Elective

PREAMBLE: This course aims to understand the concepts of load forecasting and generation forecasting.

PREREQUISITE COURSES: Power System Operation and Control

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Understand basic concepts of load forecasting and load management
- Understand the energy demand forecasting and its planning

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

COs	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
C01	Explain the load forecasting methods	К2
CO2	Summarize the Basics about energy management	К2
CO3	Illustrate the energy demand forecasting and its methodologies	К2
CO4	Explain the energy management strategy and case studies about energy forecasting	К2
CO5	Describe the planning of generation depending on forecasting	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	н					L						М	Н	L
CO2	н	L				L	н					М	Н	L
CO3	н	М										М	Н	L
CO4	Н	М	М				L				L	М	Н	L
CO5	Н	М	М			М					L	М	Н	L

UNIT I	LOAD FORECASTING	9
methodo Weather	ation and characterization of loads - Approaches to load for ology - Energy forecasting - Peak demand forecasting - Nonweather r sensitive forecast - Total forecast - Annual and monthly pea ions of state estimation to load forecasting.	r sensitive forecast and
UNIT II	LOAD MANAGEMENT	9
(EEPDS) manager	ction to Load management - Electric energy production and del - Design alternatives for EEPD systems - Communication/contro ment - Tariff structure and load management - principles of macro a pricing strategies - Assessing the impacts of load management.	ol techniques for load
UNIT III	ENERGY DEMAND FORECASTING	9
Methodo	nd dynamic analysis of energy demand - Elements of energy ologies and models for energy demand forecasting - Techno econor forecasting - Energy auditing - Energy management Power Pools and	mic approach in energy
UNIT IV	TRENDS AND CASE STUDIES	9
decision	management strategy - Symbiotic relation between information making - Case studies like industrial energy forecasting - Transporta ntial, Commercial and agricultural energy forecasting	
decision	making - Case studies like industrial energy forecasting - Transporta ntial, Commercial and agricultural energy forecasting	
decision - Resider UNIT V The role of foreca Time ho	making - Case studies like industrial energy forecasting - Transportantial, Commercial and agricultural energy forecasting FORECASTING AND PLANNING of forecasting in planning – comparison and selection of forecasting asting methods – Pattern of the Data and its effects on individual rizon effects on forecasting methods - Generation planning-fundamentation planning optimized according to generating unit categories dist	9 methods. The accuracy forecasting methods ental economic analysis
decision - Resider UNIT V The role of foreca Time hou - Genera	making - Case studies like industrial energy forecasting - Transportantial, Commercial and agricultural energy forecasting FORECASTING AND PLANNING of forecasting in planning – comparison and selection of forecasting asting methods – Pattern of the Data and its effects on individual rizon effects on forecasting methods - Generation planning-fundamentation planning optimized according to generating unit categories dist	9 methods. The accurace forecasting methods ental economic analysi
decision - Resider UNIT V The role of foreca Time hou - Genera system p	making - Case studies like industrial energy forecasting - Transportantial, Commercial and agricultural energy forecasting FORECASTING AND PLANNING of forecasting in planning – comparison and selection of forecasting asting methods – Pattern of the Data and its effects on individual rizon effects on forecasting methods - Generation planning-fundame ation planning optimized according to generating unit categories dist blanning	9 methods. The accurace forecasting methods ental economic analysi ribution & transmission
decision - Resider UNIT V The role of foreca Time hou - Genera system p TEXT BO 1. S	making - Case studies like industrial energy forecasting - Transportantial, Commercial and agricultural energy forecasting FORECASTING AND PLANNING of forecasting in planning – comparison and selection of forecasting asting methods – Pattern of the Data and its effects on individual rizon effects on forecasting methods - Generation planning-fundame ation planning optimized according to generating unit categories dist blanning	9 methods. The accurace forecasting methods ental economic analysi ribution & transmission TOTAL: 45 PERIODS
decision - Resider UNIT V The role of foreca Time hor - Genera system p TEXT BO 1. S 1. S 1. S 1. S 1. S 1. S 1. S	making - Case studies like industrial energy forecasting - Transportantial, Commercial and agricultural energy forecasting FORECASTING AND PLANNING of forecasting in planning – comparison and selection of forecasting asting methods – Pattern of the Data and its effects on individual rizon effects on forecasting methods - Generation planning-fundame ation planning optimized according to generating unit categories dist blanning OKS: S.A. Soliman, Ahmad Mohammad Al-Kandari 'Electrical Load Fore	9 methods. The accurace forecasting methods ental economic analysi ribution & transmission TOTAL: 45 PERIODS ecasting: Modeling and
decision - Resider UNIT V The role of foreca Time hou - Genera system p TEXT BO 1. S 1. S 1. S 1. S 1. S 1. S 1. S 1. S	making - Case studies like industrial energy forecasting - Transportantial, Commercial and agricultural energy forecasting FORECASTING AND PLANNING of forecasting in planning – comparison and selection of forecasting asting methods – Pattern of the Data and its effects on individual rizon effects on forecasting methods - Generation planning-fundame ation planning optimized according to generating unit categories dist blanning OOKS: S.A. Soliman, Ahmad Mohammad Al-Kandari 'Electrical Load Fore Model Construction' 1 st Edition, Springer, 2010. Allen J.Wood, Bruce F. Wollenbarg, "Power Generation, Operation and	9 methods. The accurace forecasting methods ental economic analysi ribution & transmission TOTAL: 45 PERIODS ecasting: Modeling and
decision - Resider UNIT V The role of foreca Time hou - Genera system p TEXT BO 1. S r 2. A REFEREN 1. S	making - Case studies like industrial energy forecasting - Transportantial, Commercial and agricultural energy forecasting FORECASTING AND PLANNING of forecasting in planning – comparison and selection of forecasting asting methods – Pattern of the Data and its effects on individual rizon effects on forecasting methods - Generation planning-fundame ation planning optimized according to generating unit categories dist blanning OKS: S.A. Soliman, Ahmad Mohammad Al-Kandari 'Electrical Load Fore Model Construction' 1 st Edition, Springer, 2010. Allen J.Wood, Bruce F. Wollenbarg, "Power Generation, Operation an and Sons, 1984.	9 methods. The accurace forecasting methods ental economic analysi ribution & transmission TOTAL: 45 PERIODS ecasting: Modeling and hd Control", John Wiley

COURSE C	CODE:	COURSE TITLE:		L	Т	Р	С		
10212EE	127	LOAD DISPATCHING		3	0	0	3		
COURSE C/	ATEGOR	Y: Programme Elective					1		
PREAMBLE dispatch ce		ourse aims to provide the knowledge on objectives, for	unctio	n and	locatio	on of	loa		
PREREQUI	SITE CO	URSES: Power System Operation and Control							
COURSE EI	DUCATIO	ONAL OBJECTIVES:							
The object	ives of t	he course are to,							
• Un	nderstan	d the basics of integrated power systems							
• Ac	quire kn	owledge on function and location of load dispatch cen	tres						
• Fai	miliar w	ith equipment and general arrangement of control roo	m at l	oad di	ispatch	centr	es		
• Ga	in know	ledge on telecommunication in power system operation	on						
• Un	Iderstan	d contingencies of operating reserve and its maintenar	nce						
COURSE O	итсом	ES:							
Upon t	the succ	essful completion of the course, students will be able t	0:						
COs Course Outcomes Knowledge Level (Based on revised Bloom's Taxonomy)									
CO1	Outlin	e the basics of integrated power systems			К2				
CO2Explain the function and location of load dispatch centresK2									

operation

maintenance

CO3

CO4

CO5

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Μ										L	Н	
CO2	Н	Μ	L									L	Н	L
CO3	Н	Μ	L									L	Н	L
CO4	Н	М										L	Н	
CO5	Н	М	М									L	Н	

Illustrate the equipment and general arrangement of

Describe the telecommunication in power system

Explain the contingencies of operating reserve and its

control room at load dispatch centres

К2

К2

К2

COURSE CO	NTENT:	
UNIT I	INTRODUCTION	9
Reduction	nt of integrated Power Systems - Benefits of operation of integrate n generating capacity due to the diversity of load demands - Re crease in the size of generating sets.	
UNIT II	OBJECTIVES, FUNCTION AND LOCATION OF LOAD DISPATCH CENTRES	9
•	Load dispatch centres and control centres - Function of the mode Planning of a power systems – Aspects of the operational planning of	
UNIT III	FACILITIES AT LOAD DISPATCH CENTRES	9
• •	and General arrangement - Building, Control room - Mosaic Diagra	am - Mimic Board -
UNIT IV	TELECOMMUNICATIONS IN POWER SYSTEM OPERATION	9
media - PLC	ecommunications in power system operation – Various power syste CC, Radio Circuits, Leased Telephone Circuits, Fibre Optics and Satelli tion systems.	
UNIT V	DETERMINATION OF OPERATING RESERVE	9
	operating Reserve - Contingencies of operating reserve-General pra e - Problems of operating reserves.	actice regarding the
		TOTAL: 45 PERIODS
TEXT BOOK	S:	
1. P.K	undur, 'Power System Stability and Control' McGraw Hill Education, 20	011
REFERENCE	BOOKS:	
1. R.K.	Rajput, 'A Text Book of Power System Engineering', Laxmi Publication,	, 2011
2. Mar	iani.E, Murthy.S.S, 'Advanced Load Dispatch for Power Systems', Sprir	nger, 2012

	URSE CODE:		L	Т	Р	(
10	D212EE128	REACTIVE POWER MANAGEME	NT	3	0	0	:
OURSE (CATEGORY: Program	nme Elective			1	1	
REAMBL	LE: It is aimed to pro	ovide the importance of reactive power in ele	ctric power ne	etwork			
REREQU	IISITE COURSES: Cir	cuit Analysis and Transmission and Distributio	n				
OURSE E	EDUCATIONAL OBJ	ECTIVES:					
ne objec	tives of the course	are to,					
• Ic	lentifying the nece	essity of reactive power compensation and	describing th	ne role	e of	reac	tiv
•	power in electrical r						
		pes of reactive power compensation in transm	ission system	S			
	-	of reactive power for HVDC systems					
	nderlying the impo	rtance of FACTS devices					
- 11							
•	lustrating reactive p	power coordination system for renewable ene	rgy systems				
OURSE (OUTCOMES:	power coordination system for renewable ene					
OURSE (OUTCOMES:						
DURSE (Upon	OUTCOMES:	power coordination system for renewable energy power coordination system for renewable energy power coordination of the course, students will be able to	: Knowled	-	-		1
OURSE (OUTCOMES:	power coordination system for renewable ene	: Knowlec	vised B	Bloon		
OURSE OUPON	DUTCOMES: the successful com	power coordination system for renewable energy power coordination system for renewable energy power coordination of the course, students will be able to Course Outcomes	: Knowlec on rev	-	Bloon		1
OURSE OUPON	DUTCOMES: the successful com Highlight the imp	power coordination system for renewable energy of the course, students will be able to Course Outcomes	: Knowlec on rev	vised B	Bloon		k
OURSE (Upon CO Nos.	DUTCOMES: the successful com Highlight the imp in power system	power coordination system for renewable energy operation of the course, students will be able to Course Outcomes	: Knowlec on rev	vised B axonor	Bloon		k
OURSE (Upon CO Nos.	DUTCOMES: the successful com Highlight the imp in power system Explain the effect	power coordination system for renewable energy operation of the course, students will be able to Course Outcomes portance of reactive power and voltage contro	: Knowlec on rev	vised B axonor	Bloon		k
OURSE (Upon CO Nos.	DUTCOMES: the successful com Highlight the imp in power system Explain the effect transmission system	power coordination system for renewable energy operation of the course, students will be able to Course Outcomes portance of reactive power and voltage controct to freactive power on generation and tems	: Knowlec on rev	vised B axonor K2	Bloon		
OURSE (Upon CO Nos.	DUTCOMES: the successful com Highlight the imp in power system Explain the effect transmission syst Explain the effect	power coordination system for renewable energy operation of the course, students will be able to Course Outcomes portance of reactive power and voltage contro	: Knowlec on rev	vised B axonor K2	Bloon		k
OURSE (Upon CO Nos. CO1 CO2	DUTCOMES: the successful com Highlight the imp in power system Explain the effect transmission syst Explain the effect systems	power coordination system for renewable energy operation of the course, students will be able to Course Outcomes portance of reactive power and voltage control to freactive power on generation and tems t of reactive power in HVDC transmission	: Knowlec on rev	K2 K2	Bloon		k
OURSE (Upon CO Nos. CO1 CO2	DUTCOMES: the successful com Highlight the imp in power system Explain the effect transmission syst Explain the effect systems	power coordination system for renewable energy operation of the course, students will be able to Course Outcomes portance of reactive power and voltage controct to freactive power on generation and tems	: Knowlec on rev	K2 K2	Bloon		
DURSE (Upon CO Nos. CO1 CO2 CO3	DUTCOMES: the successful com Highlight the imp in power system Explain the effect transmission syst Explain the effect systems Specify the impo	power coordination system for renewable energy operation of the course, students will be able to Course Outcomes portance of reactive power and voltage control to freactive power on generation and tems t of reactive power in HVDC transmission	: Knowlec on rev	K2 K2 K2 K2	Bloon		k

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	н		L	L								L	Н	L
CO2	М		L	М								L	Н	L
CO3	М		L	М	L								Н	L
CO4	L		L	L	L					L		L	Н	L
CO5	L		L	L	L					М		L	Н	L
05	L		L	L	L					IVI		L	11	L

UNIT I	INTRODUCTION	9
Control thr	n to Reactive Power – Analogy Examples – Sources and Sinks of Reactive Powe ough Static and Dynamic sources of Reactive Power – Different types of Loads a sumption – Procedure for Controlling Voltage and Reactive Power - Methods for P ent.	nd Reactive
UNIT II	EFFECT OF REACTIVE POWER ON GENERATION AND TRANSMISSION	9
model – Su Shunt react	 Reactive power capability curve - Synchronous condenser - Introduction to trans rge impedance loading –Thermal loading of transmission lines – Methods of volta cors and reactive power control – Series and shunt capacitors – Comparison betwee pensation – OLTC effect on reactive power. 	ige control
UNIT III	EFFECT OF REACTIVE POWER ON HVDC SYSTEMS	9
	n to HVDC –Effects on reactive power - Voltage source converters – Interaction b g HVDC systems – HVDC Bi-pole configuration – HVDC Back-to-Back configuration.	etween two
UNIT IV	ROLE OF FACTS DEVICES	9
Switched Se	 Converter based compensators – STATCOM – Series connected controllers eries Capacitor (TSSC) - Thyristor Controlled Series Capacitor (TCSC) – Thyristor Swi SR) – Thyristor Controlled Series Reactor (TCSR). 	
UNIT V	REACTIVE POWER MANAGEMENT FOR RENEWABLE ENERGY SYSTEMS	9
capabilities	ower influence on voltage and transient stability – Reactive power require for wind generators – Capability Curves – Various control objectives – Read f solar PV generator – Control schemes in inverter circuit in solar PV system for read Reactive power support devices – Control strategies for reactive power man	ctive powe active powe
support –	energy systems	45 PERIODS
support –	energy systems TOTAL:	45 PERIODS
support – renewable TEXTBOOK 1. D.M.Tag	energy systems TOTAL:	
support – renewable TEXTBOOK 1. D.M.Tag 2. 'Reactive	energy systems TOTAL: S: are, 'Reactive power Management', Tata McGraw Hill, 2004. Power Management – A Resource Handbook', National Load Dispatch Centre, Nev	45 PERIODS v Delhi, Dec

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10212EE129	SMART GRID	3	0	0	3

COURSE CATEGORY: Programme Elective

PREAMBLE: To enable the students, acquire knowledge on smart grid, different options of architectural design and sensors, measurement technology for various aspects of smart grid, renewable energy sources and storage integration with smart grid.

PREREQUISITE COURSES: Power System Analysis

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Understand the basic concepts, components and architecture of smart grid
- Understand the various measurement technologies in smart grid
- Educate the importance of renewable energy in smart
- Familiar about the battery technology and energy storage
- Brief about the role of Electric Vehicles in smart grid

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO N	los.				Cours	e Outc	omes					n revis	e Level ed Bloc onomy)	
со	1	Explain	the sm	art gric	ls com	ponent	s and a	rchitec	ture				К2	
CO	2	Describ smart g		ent me		К2								
со	3	Summarize various renewable energy technologies											К2	
CO	4	Interpre	et the r	ole of b	oatterie	es and e	energy	storage	es				К2	
CO	5	Summa	rize the	e impor	tance o	of Elect	ric Veh	icles in	smart	grid			К2	
CORR	ELATI	ON OF C	Os WIT	'H POs	AND P	SOs								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	М			М	L					L		М	
CO2	М	М			М	L					L		М	
CO3	М	M M L L M												
CO4	М	M M L L M												
CO5	М	М			М	L					L		М	

COURSE C	ONTENT:	
UNIT I	INTRODUCTION	9
Enhancem	ird Versus Smart Grid, Rationale for Smart Grid, Computational Ir ent, Communication and Standards, Environment and Economics Architecture, Functions of Components	
UNIT II	SENSORS AND MEASUREMENT	9
	or Smart Grid, Monitoring and Measurement Technologies, PM s, Multi Agent Systems (MAS) Technology, Micro grid and Smart gr nent	
UNIT III	DISTRIBUTED GENERATION	9
	gy, PV Systems, Wind turbine Systems, Biomass, Small and Micral and heat pumps.	o Hydro Power, Fuel Cell
UNIT IV	ENERGY STORAGE	9
	Flow Batteries, Fuel Cell and hydrogen electrolytes, Flywheel, Su brage systems, super capacitors, Simulation and case studies	uper conduction magnetic
UNIT V	ELECTRIC VEHICLES	9
-	ctric Vehicles and hybrid, Vehicle classes, Vehicle Architecture Grid Impacts, Vehicle to Grid (V2G)	e, Gird to Vehicle (G2V
		TOTAL: 45 PERIODS
TEXT BOO	KS:	
press,	Momoh, 'Smart Grid: Fundamentals of Design and Analysis', Joh 2012. Berger, K.Iniewski, 'Smart Grid: Applications, Communications &	•
	eprint 2015.	Security whey main it
REFERENC	E BOOKS:	
	oon P. Sioshansi, 'Smart Grid: Integrating Renewable, Distrib mic Press, 2012.	uted & Efficient Energy'
2. Yokoy	ama, 'Smart Grid: Technology and Applications', John Wiley & Sons	Inc, 2012.
	W.Gellings, 'The Smart Grid: Enabling Energy Efficiency and Den Inc,2009.	nand Response', Fairmon
	ang, Shi Jing 'Innovative Testing and Measurement Solutions for S	Smart Grid', John Wiley &

СО	JRSE C	ODE:	Т	Ρ	С									
10)212EE	130			LED LIG	GHTING		NOLOG	Y		3	0	0	3
COURS	E CATE	GORY:	Progra	mme E	lective									I
to discu used in LED bas	PREAMBLE: This course forms the basis for understanding the types and fabrication of LEDs also it aims to discuss about the significance of driver circuits used in LED lighting system. The control strategies used in lighting of LED based systems are discussed so as to provide knowledge in design and analysis of LED based system. Lastly, the course also provides basic hands-on exposure on assembly techniques for developing LED based products. PREREQUISITE COURSES: Power Electronics													
	-					CS								
COURS														
The obj	ectives	s of the	course	e are to	,									
•	State	the nee	ed for Il	llumina	tion.									
•	State the need for Illumination.Define good Illumination.													
•	 List standard voltage levels. 													
•	•••	ation o	•					0,						
•		e the as	•	-		hting s	ystems							
•		ain the	-											
•		y fault i	-	ing syst	ems									
COURS					(
	on the	success	stul cor	npietio	n of the	e cours	e, stua	ents wi	li be ac	ne to:	Kno	uladaa	Level (E	Pacad
CO Nos					Course	Outco	mes					n revise	d Bloor nomy)	
CO1		xplain luminat					s, laws	and o	quantit	ies of		ŀ	(2	
CO2	2 E:	xplain a	bout L	ED ligh [.]	ting, ty	pes of l	ighting	S				ķ	(2	
CO3	i	lentify			tional	feature	es, par	ts and	worki	ng of		ŀ	(2	
	D	luminat iscuss a			e types	and w	orking	of pow	er elec	tronic				
CO4	L	rcuits u		-				e. pen	0. 0.00			ŀ	(3	
		evelop		· ·			•		- · ·				()	
CO5		ontrol s ED light					-			CB TOP		ľ	(3	
CORRE					•			- 1						
CORRE	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	DO11	PO 12	PSO1	PSO2
CO1	M	102	H	104	105	100	10/	M	103	1010	1011	1012	1301	F 302
CO1	141	М				М								
CO3	н		M					М		М				Н
CO4					М									М
CO5	CO5 L M H													
		1		1	1		1	1		1	1	1	1	. <u> </u>

		~
UNIT I	LIGHT AND ILLUMINATION	9
Classification of	ight: Electromagnetic Spectrum, Visible Spectrum, Wavelength, Radiometry & Photometry - Natural & Artificial Light Sources - Cha Vision - Evolution of Lighting Technologies - Merits and Demerits of	aracteristics abou
	d for Measurement of Light Quantities.	the technologies
UNIT II	LED TECHNOLOGY	9
LED's - Experime	 Electrical characteristics - Optical characteristics - Data Sheet interp ental Procedures for determination of the Characteristics - White LED Solid State Luminaire Standards - Performance Measurements. 	
UNIT III	POWER ELECTRONICS FOR LED LIGHTING	9
Boost, Sepic & F DC Drivers, Imp	uirements and Regional Standards – Topology Overview - Linear, E ly-back) - Driving options - Discrete based drivers, Linear drivers, Swit portance of Power Factor Correction (PFC), Single Stage vs 2-Sta C Drivers - PWM IC	tching drivers - AC
	LIGHT POWER & CONTROL strategies, techniques & equipment, sensors and timers, switche	
Lighting control control algorithr Impact of lightin channel & large lighting control		es versus dimmin ession techniques uter, simple mult tectural & buildin
Lighting control control algorithr Impact of lightin channel & large lighting control	strategies, techniques & equipment, sensors and timers, switche n, harmonics, EI from lighting equipment – its measurement & suppr ng control, protocols for lighting control; Lighting control by compu multi-channel control, stage & entertainment lighting control, archit systems; Centralized vs. distributed system; Status monitoring,	es versus dimmin ession techniques uter, simple mult tectural & buildin
Lighting control control algorithr Impact of lightin channel & large lighting control electrical load m UNIT V Design Fundame printing, Pick & REWORK & Repa	strategies, techniques & equipment, sensors and timers, switche n, harmonics, EI from lighting equipment – its measurement & suppr ng control, protocols for lighting control; Lighting control by compu multi-channel control, stage & entertainment lighting control, archit systems; Centralized vs. distributed system; Status monitoring, nonitoring, lamp life monitoring system, applications	es versus dimmin ession techniques uter, simple mult tectural & buildin fault monitoring 9 chnology – Scree
Lighting control control algorithr Impact of lightin channel & large lighting control electrical load m UNIT V Design Fundame printing, Pick & REWORK & Repa	strategies, techniques & equipment, sensors and timers, switche n, harmonics, El from lighting equipment – its measurement & suppr ng control, protocols for lighting control; Lighting control by compu- multi-channel control, stage & entertainment lighting control, archit systems; Centralized vs. distributed system; Status monitoring, nonitoring, lamp life monitoring system, applications LED MANUFACTURING TECHNOLOGY entals of LED Lamps - Testing of LED Lamps – SMD PCB Assembly te a place Machines programming & practice, Reflow soldering, Han air, Dispensing, Coating, protection Optional Packaging process- Diebonding, Wire bonding, Encapsulation etc.	es versus dimmin ession techniques uter, simple mult tectural & buildin fault monitoring 9 chnology – Scree
Lighting control control algorithr Impact of lightin channel & large lighting control electrical load m UNIT V Design Fundame printing, Pick & REWORK & Repa	strategies, techniques & equipment, sensors and timers, switche n, harmonics, El from lighting equipment – its measurement & suppr ng control, protocols for lighting control; Lighting control by compu- multi-channel control, stage & entertainment lighting control, archit systems; Centralized vs. distributed system; Status monitoring, nonitoring, lamp life monitoring system, applications LED MANUFACTURING TECHNOLOGY entals of LED Lamps - Testing of LED Lamps – SMD PCB Assembly te a place Machines programming & practice, Reflow soldering, Han air, Dispensing, Coating, protection Optional Packaging process- Diebonding, Wire bonding, Encapsulation etc.	es versus dimmin ession techniques uter, simple mult tectural & buildin fault monitoring 9 chnology – Scree d Soldering, SM
Lighting control control algorithr Impact of lightin channel & large lighting control electrical load m UNIT V Design Fundame printing, Pick & REWORK & Repa ADVANCED: LED TEXT BOOKS: 1. Amar K	strategies, techniques & equipment, sensors and timers, switche n, harmonics, El from lighting equipment – its measurement & suppr ng control, protocols for lighting control; Lighting control by compu- multi-channel control, stage & entertainment lighting control, archit systems; Centralized vs. distributed system; Status monitoring, nonitoring, lamp life monitoring system, applications LED MANUFACTURING TECHNOLOGY entals of LED Lamps - Testing of LED Lamps – SMD PCB Assembly te a place Machines programming & practice, Reflow soldering, Han air, Dispensing, Coating, protection Optional Packaging process- Diebonding, Wire bonding, Encapsulation etc.	es versus dimmin ession techniques uter, simple mult tectural & buildin fault monitoring 9 chnology – Scree d Soldering, SM OTAL: 45 PERIOD
Lighting control control algorithr Impact of lightin channel & large lighting control electrical load m UNIT V Design Fundame printing, Pick & REWORK & Repa ADVANCED: LED TEXT BOOKS: 1. Amar K Publishin	strategies, techniques & equipment, sensors and timers, switche n, harmonics, El from lighting equipment – its measurement & suppr ng control, protocols for lighting control; Lighting control by compu- multi-channel control, stage & entertainment lighting control, archit systems; Centralized vs. distributed system; Status monitoring, ionitoring, lamp life monitoring system, applications LED MANUFACTURING TECHNOLOGY entals of LED Lamps - Testing of LED Lamps – SMD PCB Assembly te a place Machines programming & practice, Reflow soldering, Han air, Dispensing, Coating, protection Optional Packaging process- Diebonding, Wire bonding, Encapsulation etc.	es versus dimmin ession technique uter, simple mult tectural & buildin fault monitoring 9 chnology – Scree d Soldering, SM OTAL: 45 PERIOD
Lighting control control algorithr Impact of lightin channel & large lighting control electrical load m UNIT V Design Fundame printing, Pick & REWORK & Repa ADVANCED: LED TEXT BOOKS: 1. Amar K Publishin	strategies, techniques & equipment, sensors and timers, switche n, harmonics, El from lighting equipment – its measurement & suppr ng control, protocols for lighting control; Lighting control by compu- multi-channel control, stage & entertainment lighting control, archit systems; Centralized vs. distributed system; Status monitoring, ionitoring, lamp life monitoring system, applications LED MANUFACTURING TECHNOLOGY entals of LED Lamps - Testing of LED Lamps – SMD PCB Assembly te a place Machines programming & practice, Reflow soldering, Han air, Dispensing, Coating, protection Optional Packaging process- Diebonding, Wire bonding, Encapsulation etc. G.Ganguly, 'Optoelectronic Devices and Circuits-Theory and App ng House, 2010. Dhra, 'Power Electronics', Khanna Publishers, 2015.	es versus dimmin ression technique uter, simple mult tectural & buildin fault monitoring 9 chnology – Scree d Soldering, SM OTAL: 45 PERIOD

COURSE CODE: COURSE TITLE:	L	Т	Р	С
10212EE131 FLEXIBLE AC TRANSMISSION SYSTEMS	3	0	0	3

COURSE CATEGORY: Programme Elective

PREAMBLE: This course will describe about basic concepts, different types, scope and applications of FACTS controllers in power transmission system

PREREQUISITE COURSES: Power Electronics

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Know the importance of compensation in transmission lines and the concepts of FACTS devices.
- Illustrate the design, modelling and applications of SVC.
- Familiar with the operation, modes, modelling and applications of TCSC.
- Study the principle, characteristics, modelling and applications of STATCOM and SSSC.
- Summarize about the importance in coordination of FACTS controllers.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the basic fundamental of FACTS controllers	К2
CO2	Summarize about Static VAR Compensators	К2
CO3	Explain about Modelling, Operation and control strategies of Static series compensation-SVC	К2
CO4	Explain the voltage source-based FACTS controllers	К2
CO5	Explain the modelling and design of Coordinating multiple FACTS controllers using control techniques	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L									L	М	Н	L
CO2	Н	L	L								L	М	Н	L
CO3	Н	L	L								L	М	Н	L
CO4	Н	L	L								L	М	Н	L
CO5	Н	L	L								L	М	Н	L

UNIT	I INTRODUCTION TO FACTS	9
Power	e power control in electrical power transmission lines –Uncompensated transmissi Flow in AC System – relative - importance of controllable parameter –opportunities for e benefits for FACTS.	
UNIT I	II STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS	9
	or compensation – introduction to shunt & series compensation – objectives of shunt nsation – configuration & operating characteristics, Static shunt compensators: SVC - C ntrol.	
UNIT I	II SERIES COMPENSATION AND APPLICATIONS	9
	series compensation: TSSC - Modeling, Operation and control, Different modes – ace model –Applications: Improvement of the system stability limit –Enhancement c ag.	
	V VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS	9
Applica	Synchronous Compensator (STATCOM) – Principle of operation – V-I Character tions: Steady state power transfer-Enhancement of transient stability - Prevention o ity - SSSC-operation of SSSC and the control of power flow –Modeling of SSSC in load	of voltag
	nt stability studies.	-
	nt stability studies.	9
transier UNIT V Introdu operati	nt stability studies.	9 C) – bas
transier UNIT V Introdu operati	CO-ORDINATION OF FACTS CONTROLLERS Inction to Unified Power Flow Controller (UPFC) & Interline Power Flow Controller (IPFC) Inspirinciples UPFC – introduction to sub synchronous Resonance - Coordination of	9 C) – bas ^r multip
transier UNIT V Introdu operati	Ant stability studies. CO-ORDINATION OF FACTS CONTROLLERS Action to Unified Power Flow Controller (UPFC) & Interline Power Flow Controller (IPFC) ng principles UPFC – introduction to sub synchronous Resonance - Coordination of lers using linear control techniques. Introduction to SCADA and security monitoring. TOTAL: 45	9 C) – bas ^r multip
UNIT V Introdu operati control	Ant stability studies. CO-ORDINATION OF FACTS CONTROLLERS Action to Unified Power Flow Controller (UPFC) & Interline Power Flow Controller (IPFC) ng principles UPFC – introduction to sub synchronous Resonance - Coordination of lers using linear control techniques. Introduction to SCADA and security monitoring. TOTAL: 45	9 C) – bas ^T multip PERIOD
transier UNIT V Introdu operati control TEXT Be 1.	Ant stability studies. CO-ORDINATION OF FACTS CONTROLLERS Action to Unified Power Flow Controller (UPFC) & Interline Power Flow Controller (IPFC) ng principles UPFC – introduction to sub synchronous Resonance - Coordination of lers using linear control techniques. Introduction to SCADA and security monitoring. TOTAL: 45 OOKS: Narain G. Hingorani and Laszlo Gyugyi, 'Understanding FACTS – Concepts and Techn	9 C) – bas multip PERIOD
transier UNIT V Introdu operati control TEXT Bo 1. 2.	Ant stability studies. CO-ORDINATION OF FACTS CONTROLLERS Action to Unified Power Flow Controller (UPFC) & Interline Power Flow Controller (IPFC) ng principles UPFC – introduction to sub synchronous Resonance - Coordination of lers using linear control techniques. Introduction to SCADA and security monitoring. TOTAL: 45 OOKS: Narain G. Hingorani and Laszlo Gyugyi, 'Understanding FACTS – Concepts and Techn Flexible AC Transmission Systems', Standard Publishers, New Delhi, 2001. R. Mohan Mathur and Rajiv K. Varma, 'Thyristor Based FACTS Controller for	9 C) – bas multip PERIOD
transien UNIT V Introdu operati control TEXT BO 1. 2. REFERE	And stability studies. CO-ORDINATION OF FACTS CONTROLLERS Action to Unified Power Flow Controller (UPFC) & Interline Power Flow Controller (IPFC) ng principles UPFC – introduction to sub synchronous Resonance - Coordination of lers using linear control techniques. Introduction to SCADA and security monitoring. TOTAL: 45 OOKS: Narain G. Hingorani and Laszlo Gyugyi, 'Understanding FACTS – Concepts and Techn Flexible AC Transmission Systems', Standard Publishers, New Delhi, 2001. R. Mohan Mathur and Rajiv K. Varma, 'Thyristor Based FACTS Controller for Transmission Systems', Wiley Inter science Publications, 2002	9 C) – bas multip PERIOD
transier UNIT V Introdu operati control TEXT BO 1. 2. REFERE	Ant stability studies. CO-ORDINATION OF FACTS CONTROLLERS Inction to Unified Power Flow Controller (UPFC) & Interline Power Flow Controller (IPFC) ng principles UPFC – introduction to sub synchronous Resonance - Coordination of lers using linear control techniques. Introduction to SCADA and security monitoring. TOTAL: 45 OOKS: Narain G. Hingorani and Laszlo Gyugyi, 'Understanding FACTS – Concepts and Techn Flexible AC Transmission Systems', Standard Publishers, New Delhi, 2001. R. Mohan Mathur and Rajiv K. Varma, 'Thyristor Based FACTS Controller for Transmission Systems', Wiley Inter science Publications, 2002 SNCE BOOKS: Padiyar K.R., 'FACTS Controllers in Power Transmission and Distribution', New Age Inter	9 C) – bas multip PERIOD
transier UNIT V Introdu operati control TEXT BO 1. 2. REFERE 1.	Ant stability studies. CO-ORDINATION OF FACTS CONTROLLERS Inction to Unified Power Flow Controller (UPFC) & Interline Power Flow Controller (IPFC) ng principles UPFC – introduction to sub synchronous Resonance - Coordination of lers using linear control techniques. Introduction to SCADA and security monitoring. TOTAL: 45 OOKS: Narain G. Hingorani and Laszlo Gyugyi, 'Understanding FACTS – Concepts and Techn Flexible AC Transmission Systems', Standard Publishers, New Delhi, 2001. R. Mohan Mathur and Rajiv K. Varma, 'Thyristor Based FACTS Controller for Transmission Systems', Wiley Inter science Publications, 2002 INCE BOOKS: Padiyar K.R., 'FACTS Controllers in Power Transmission and Distribution', New Age Inte (P) Limited Publishers, 2008.	9 C) – bas multip PERIOD nology o Electric
transier UNIT V Introdu operati control TEXT B 1. 2. REFERE 1. 2.	Ant stability studies. CO-ORDINATION OF FACTS CONTROLLERS Inction to Unified Power Flow Controller (UPFC) & Interline Power Flow Controller (IPFC) ng principles UPFC – introduction to sub synchronous Resonance - Coordination of lers using linear control techniques. Introduction to SCADA and security monitoring. TOTAL: 45 OOKS: Narain G. Hingorani and Laszlo Gyugyi, 'Understanding FACTS – Concepts and Techn Flexible AC Transmission Systems', Standard Publishers, New Delhi, 2001. R. Mohan Mathur and Rajiv K. Varma, 'Thyristor Based FACTS Controller for Transmission Systems', Wiley Inter science Publications, 2002 SNCE BOOKS: Padiyar K.R., 'FACTS Controllers in Power Transmission and Distribution', New Age Inter (P) Limited Publishers, 2008. Narain G. Hingorani, 'Flexible AC Transmission', IEEE Spectrum, April 1993, 40-45 Narain G. Hingorani, 'High Power Electronics in Flexible AC Transmission', IEE	9 C) – bas multip PERIOD nology Electric
transien UNIT V Introdu operati control TEXT B 1. 2. REFERE 1. 3.	Ant stability studies. CO-ORDINATION OF FACTS CONTROLLERS Inction to Unified Power Flow Controller (UPFC) & Interline Power Flow Controller (IPFC) ing principles UPFC – introduction to sub synchronous Resonance - Coordination of lers using linear control techniques. Introduction to SCADA and security monitoring. TOTAL: 45 OOKS: Narain G. Hingorani and Laszlo Gyugyi, 'Understanding FACTS – Concepts and Techn Flexible AC Transmission Systems', Standard Publishers, New Delhi, 2001. R. Mohan Mathur and Rajiv K. Varma, 'Thyristor Based FACTS Controller for Transmission Systems', Wiley Inter science Publications, 2002 INCE BOOKS: Padiyar K.R., 'FACTS Controllers in Power Transmission and Distribution', New Age Inter (P) Limited Publishers, 2008. Narain G. Hingorani, 'Flexible AC Transmission', IEEE Spectrum, April 1993, 40-45 Narain G. Hingorani, 'High Power Electronics in Flexible AC Transmission', IEE Engineering Review, 1998.	9 C) – bas multip PERIOD nology Electric

COURSE CODE:	COURSE TITLE:	L	Т	Р	С							
10212EE132	10212EE132 MODERN POWER CONVERTERS											
COURSE CATEGORY: Pro	gramme Elective											
PREAMBLE: In this co	PREAMBLE: In this course student will get exposure to basic principle of operation, structure,											
characteristics of power	converters.											
PREREQUISITE COURSES	: Power Electronics											
COURSE EDUCATIONAL	OBJECTIVES:											
The objectives of the cou	urse are to,											
Explain about th	e Single-phase bridge rectifiers with RL, RLE loads & eff	fect of	source	imped	ance							

- Explain about the three phase bridge rectifiers with RL, RLE loads & effect of source impedance
- Teach about design and analysis of dc –dc converters
- Present on single-phase bi-directional controllers with R, L and R-L loads, 3-phase controllers.
- Explicate the single phase and three phase cycloconverters.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the types loads with single phase thyristor-controlled converter.	К2
CO2	Describe the operation, characteristics and performance parameters three phase thyristor-controlled converter.	К2
CO3	Identify the types of dc-dc converters.	К2
CO4	Explain the single-phase bi-directional controllers with R, L and R-L loads & 3-phase controllers.	К2
CO5	Describe the principle of operation of single phase and three phase Cycloconverters.	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L										L	н	L
CO2	Н	М	L										Н	L
CO3	Н	М	L										н	
CO4	Н	М	L									L	н	L
CO5	Н	L											Н	

COURSE C	ONTENT:	
UNIT I	SINGLE PHASE AC TO DC CONVERTERS	9
freewheel harmonics	ase bridge rectifiers, half controlled and fully controlled conver ing diodes, Dual Converter, sequence control of converters-in and output ripple, smoothing inductance-power factor, effect c eactive power and power balance in converter circuits.	nverter operation, Input
UNIT II	THREE PHASE AC TO DC CONVERTERS	9
sequence	fully controlled converters with R, RL, RLE loads, freewheeling control of converters-inverter operation, Input harmonics and e-power factor, effect of source impedance and overlap, 12 pulse con	output ripple, smoothing
UNIT III	DC TO DC CONVERTERS	9
classificati	of operation, choice of communication circuit elements, step dow on, Voltage and current commutated choppers, effect of source I e chopper, resonant converters.	
UNIT IV	AC VOLTAGE CONTROLLERS	9
•	of phase control, single-phase bi-directional controllers with R, I s, different configurations, Analysis with pure R and L loads.	and R-L loads, 3-phase
UNIT V	CYCLOCONVERTERS	9
	of operation, single phase and three phase cyclo converters, Powe and analysis of power factor	er circuits, gating signals-
		TOTAL: 45 PERIODS
TEXT BOO	KS:	
	ashid M.H., 'Power Electronics Circuits, Devices and Applications', P lition, New Delhi, 1995.	rentice Hall India, Second
2. P.	C Sen.,'Modern Power Electronics ', Wheeler publishing Co, First Editi	on, New Delhi-1998.
REFERENC	E BOOKS:	
	ohan N., Undeland and Robbins, 'Power Electronics Converters - App 'iley and sons, Inc., New York, 1995.	lications and Design', John

COURSE	CODE:	COURSE TITLE:		L	Т	Ρ	С		
10212E	E133	AUTOMOTIVE ELECTRICAL & ELECTRONIC SYSTE	EMS .	3	0	0	3		
COURSE C	ATEGOR	Y: Programme Elective					I		
PREAMBL	E: The co	ourse is aimed at imparting fundamental knowledge at	out the el	ectri	cal la	yout	and		
to underst	tand the	various sensors and related control system assembly wi	ithin an au	tomo	bile.				
PREREQU	ISITE COU	JRSES: Electronic Circuits							
COURSE E	DUCATIO	DNAL OBJECTIVES:							
The object	tives of th	ne course are to,							
• Ex	plain the	basic layout of an automotive electrical system							
•	ustrate tł	ne Starting and Charging systems of a vehicle.							
• De	escribe al	bout the Sensors and Actuators used in an Automobile.							
• Ex	plain the	control systems used within a vehicle.							
•	ustrate a	bout the basic management system within a vehicle.							
COURSE C	олтсом	ES:							
Upon	the succe	essful completion of the course, students will be able to):						
CO Nos.	Course Outcomes Taxonomy)								
C01	Emphas systems	ize the basic architecture of Automotive Electrical		K2					
	Illustrat	e the problems behind the drives employed in a							

C02	Illustrate the problems behind the drives employed in a vehicle.	К2
C03	Relate the sensor arrangements in a vehicle	К2
C04	Explain the control strategies on a vehicle	К2
C05	Outline the parameters to be controlled for the Engine management system.	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	L									L	Н	L
CO2	Н	М	L									L	Н	L
CO3	Н	М	L	L								L	Н	L
CO4	Н	М	L	L								L	Н	L
CO5	н	М	L	L								L	Н	L

COURSE	CONTENT:	
UNIT I	INTRODUCTION TO AUTOMOTIVE ELECTRICAL SYSTEM	9
diagrams	ive Electrical Layout, Automotive component operation, Electrical wiring and symbols On Board Diagnostics, Dash Board instruments, Warnin s and troubleshooting.	
UNIT II	STARTING & CHARGING SYSTEMS	9
and cons	n at starting, behavior of starter during starting, series motor and its chara- struction of starter motors& driving mechanism, D.C. Generator and Alterr - Regulation for Charging, lighting lamps and Fuses.	
UNIT III	AUTOMOTIVE SENSORS	9
Sensor,	tion, Basic Sensor Arrangement, Types of sensors, Oxygen Sensor, Crankin Engine cooling water Sensor, engine oil pressure sensor, Flow sensor, sensor, Speed and Acceleration sensor, Knock sensor, Torque sensor, Yaw r	Temperature and
UNIT IV	AUTOMOTIVE CONTROL SYSTEMS	9
System,	ive microcontrollers, Engine Control Systems, Transmission Control Syste Braking Control System, Traction Control System, Stability Control System, S Steering Control System	•
UNIT V	ENGINE MANAGEMENT SYSTEM	9
Control,	onstruction & stroke Classification-Sensor arrangements in Engine, Open & engine cooling and warm up control, acceleration, detonation and idle speed control engineering	•
	Т	OTAL: 45 PERIODS
TEXT BO	OKS:	
	William B. Ribbens, Norman P. Mansour 'Understanding Automotive Ele 2012	ctronics', Elsevier,
2. 1	P L Kohli 'Automotive Electrical Equipment' Tata McGraw-Hill Education, 200	4.
REFEREN	ICE BOOKS:	
1. 1	om Denton 'Automobile Electrical and Electronics Systems', Elsevier, 4 th Edi	tion, 2012.
2. I	Robert Bosch 'Automotive Handbook' SAE, 1 st Edition, 2011.	
3. I	Dr.Kirpal Singh, 'Automobile Engineering', Standard Publishers, Vol- 1 and Vo	ol- 2, 2012.

COURSE CODE:
10212EE134

COURSE TITLE: FUNDAMENTALS OF ELECTRIC & HYBRID VEHICLES

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Programme Elective

PREAMBLE: This course aims in providing the fundamental knowledge on electric and hybrid power trains, principle of regenerative braking and environmental advantages of electric & hybrid vehicles.

PREREQUISITE COURSES: Power Electronics, Basic Electronics and Measurement Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Impart the knowledge on vehicle propulsion principle
- Understand the electric vehicles and its powertrains
- Get fundamental knowledge on hybrid electric vehicles
- Understand regenerative braking in electric vehicles
- Know the advantages of electric vehicles in various environment

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
C01	Enumerate the principle of vehicle propulsion and braking.	К2
C02	Outline the principle & performance of an electric vehicle.	К2
C03	Illustrate the working principle of a Hybrid Electric Vehicle.	К2
C04	Explain the braking system of EV, HEV and FCV.	К2
C05	Articulate the effects of electric and hybrid vehicles on environment	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	L			L					М	М	Н	М
CO2	Н	М	L			L					М	М	Н	М
CO3	Н	М	L			L					М	М	Н	М
CO4	Н	М	L			L					М	М	Н	М
CO5	Н	М	L			L	М				М	М	Н	М

0001101	E CONTENT:	
UNIT I	FUNDAMENTALS OF VEHICLE PROPULSION	9
Tractive	Description of Vehicle Movement - Vehicle Resistance - Dynamic Effort and Vehicle Speed - Vehicle Power Plant and Transmission nance - Operating Fuel Economy - Brake Performance	•
UNIT I	ELECTRIC VEHICLE& PROPULSION SYSTEMS	9
Transm Consum	rations of EVs - Performance of EVs - Traction Motor Characteristi ission Requirement - Vehicle Performance - Tractive Effort in N option - Principle of Operation and Performance - DC Motor Drives - I ent Magnet BLDC Motor Drives - SRM Drives	Normal Driving- Energ
UNIT II	I HYBRID ELECTRIC VEHICLES	9
	pes of HEVs-Series & Parallel HEVs-Advantages & Disadvantag ation - Design of an HEV - Hybrid Drive trains - sizing of components -	
	/ REGENERATIVE BRAKING	9
Braking	Energy Consumed in Urban Driving - Braking Energy versus Vehicle	
versus Deceler	Braking Power - Braking Energy versus Braking Power - Braking ation Rate - Braking Energy on Front and Rear Axles - Brake Systen Hybrid Braking System - Fully Controllable Hybrid Brake System	•.
versus Deceler	ation Rate - Braking Energy on Front and Rear Axles - Brake System	•.
versus Deceler Parallel UNIT V Vehicle Context	ation Rate - Braking Energy on Front and Rear Axles - Brake System Hybrid Braking System - Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysis - Alternative and Sustainable Energy Used via the Grid - Using S Vehicles - The Role of Regulations and Law Makers - Case study	n of EV, HEV, and FCV 9 s - Vehicle Pollution in Sustainable Energy with
versus Deceler Parallel UNIT V Vehicle Context Fueled	ation Rate - Braking Energy on Front and Rear Axles - Brake System Hybrid Braking System - Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysis - Alternative and Sustainable Energy Used via the Grid - Using S Vehicles - The Role of Regulations and Law Makers - Case study	n of EV, HEV, and FCV 9 s - Vehicle Pollution in Sustainable Energy with
versus Deceler Parallel UNIT V Vehicle Context Fueled vehicles	ation Rate - Braking Energy on Front and Rear Axles - Brake System Hybrid Braking System - Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysi : - Alternative and Sustainable Energy Used via the Grid - Using S Vehicles - The Role of Regulations and Law Makers - Case study 5.	n of EV, HEV, and FCV 9 s - Vehicle Pollution in Sustainable Energy with of rechargeable batter
versus Deceler Parallel UNIT V Vehicle Context Fueled vehicles	ation Rate - Braking Energy on Front and Rear Axles - Brake System Hybrid Braking System - Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysi : - Alternative and Sustainable Energy Used via the Grid - Using S Vehicles - The Role of Regulations and Law Makers - Case study 5.	n of EV, HEV, and FCV 9 s - Vehicle Pollution in Sustainable Energy with of rechargeable batter TOTAL: 45 PERIODS
versus Deceler Parallel UNIT V Vehicle Context Fueled vehicles TEXT BC 1.	ation Rate - Braking Energy on Front and Rear Axles - Brake System Hybrid Braking System - Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysi : - Alternative and Sustainable Energy Used via the Grid - Using S Vehicles - The Role of Regulations and Law Makers - Case study :. DOKS:	n of EV, HEV, and FCV 9 s - Vehicle Pollution in Sustainable Energy with of rechargeable batter TOTAL: 45 PERIODS ess, 2011.
versus Deceler Parallel UNIT V Vehicle Context Fueled vehicles TEXT BO 1. 2.	ation Rate - Braking Energy on Front and Rear Axles - Brake System Hybrid Braking System - Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysi - Alternative and Sustainable Energy Used via the Grid - Using S Vehicles - The Role of Regulations and Law Makers - Case study S. DOKS: Husain I. 'Electric and Hybrid Vehicles: Design Fundamentals' CRC Pressure 1000000000000000000000000000000000000	n of EV, HEV, and FCV 9 s - Vehicle Pollution in Sustainable Energy with of rechargeable batter TOTAL: 45 PERIODS ess, 2011.
versus Deceler Parallel UNIT V Vehicle Context Fueled vehicles TEXT BO 1. 2. REFERE	ation Rate - Braking Energy on Front and Rear Axles - Brake System Hybrid Braking System - Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysi - Alternative and Sustainable Energy Used via the Grid - Using S Vehicles - The Role of Regulations and Law Makers - Case study 	n of EV, HEV, and FCV 9 s - Vehicle Pollution in Sustainable Energy with of rechargeable batter TOTAL: 45 PERIODS ess, 2011. Viley & Sons, Ltd. 2003
versus Deceler Parallel UNIT V Vehicle Context Fueled vehicles TEXT BO 1. 2. REFERE	ation Rate - Braking Energy on Front and Rear Axles - Brake System Hybrid Braking System - Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysi - Alternative and Sustainable Energy Used via the Grid - Using S Vehicles - The Role of Regulations and Law Makers - Case study - 	9 s - Vehicle Pollution in Sustainable Energy with of rechargeable batter TOTAL: 45 PERIODS ess, 2011. Viley & Sons, Ltd. 2003 rives' CRC Press, 2005.
versus Deceler Parallel UNIT V Vehicle Context Fueled vehicles TEXT BO 1. 2. REFERE 1. 2.	ation Rate - Braking Energy on Front and Rear Axles - Brake System Hybrid Braking System - Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysi : - Alternative and Sustainable Energy Used via the Grid - Using S Vehicles - The Role of Regulations and Law Makers - Case study : DOKS: Husain I. 'Electric and Hybrid Vehicles: Design Fundamentals' CRC Pre Larminie, James, and John Lowry 'Electric Vehicle Technology' John V NCE BOOKS: Emadi, Ali, 'Handbook of Automotive Power Electronics and Motor D Ehsani, Mehrdad, Yimin Gao, and Ali Emadi 'Modern Electric, Hybrid	9 s - Vehicle Pollution in Sustainable Energy with of rechargeable batter TOTAL: 45 PERIODS ess, 2011. Viley & Sons, Ltd. 2003 rives' CRC Press, 2005. id Electric, and Fuel Cel

cc	URSE	CODE:				COURS	SE TITL	E:			L	Т	Р	С	
1	0212E	E135		SF	PECIAL	ELECT	3	3 0 0 3							
COURS	E CATI	CATEGORY: Programme Elective													
REAN	1BLE: ⁻	This co	ourse e	expose	s the	studen	ts to	the co	nstruc	tion, p	rincipl	e of c	peratio	on and	
perforr	mance	of spe	ecial el	the stu	udy of	AC &	DC ele	ectrical							
nachir															
PRERE	QUISIT	UISITE COURSES: DC Machines and Transformers, AC Machines													
COURS	E EDUCATIONAL OBJECTIVES:														
he ob	ectives of the course are to,														
•	Familiar with the construction, principle of operation and performance of synchronous reluctance motors, stepping motors, switched reluctance motors, permanent magnet brushless D.C. motors, and permanent magnet synchronous motors.														
COURS	E OUT	COME	S:												
Up	on the	succes	ssful co	mpleti	ion of t	he cou	ırse, st	udents	will be	e able t	:0:				
											.		:		
со						. .							f learni (Based	-	
Nos.				C	ourse	Outcon	nes					evised	Bloom		
												taxo	nomy)		
CO1						princi eluctan	•	•	eration	and		К2			
CO2	Outli	ne the	contro	ol sche	me for	steppe	er moto	ors				К2			
602	Sum	marize	the pe	erforma	ance ch	naracte	ristics	and co	ntrol o	f		1/2			
CO3	swite	ched re	eluctan	ce mot	ors						К2				
CO4			•		n and	contr	ol ofp	permar	nent n	nagnet		К2			
	brus	hless D).C. mo	tors.											
CO5	Inter magi	•	•	rating ous mo		racteri	stics	of	perm	nanent		l	K2		
CODDE				TH POs		2606									
	LATIO	V OF C				-305						1	1		
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	Н		L								L	L	м	L	
CO2	Н		L								L	L	М	L	
CO3	Н		L								L	L	М	L	
CO4	Н		L								L	м	М	L	
CO5	Н		L								L	L	М	L	
											1	L			

UNIT I	SYNCHRONOUS RELUCTANCE MOTORS	9
	eatures – Types – Axial and Radial flux motors – Operating Hybrid Motors – SYNREL Motors – Voltage and Torque Equatic	• •
UNIT II	STEPPER MOTOR	9
Single and multi	Features – Principle of operation – Variable reluctance moto -stack configurations – Torque equations – Modes of excitatio Aicroprocessor control of stepper motors – Closed loop contro	ns – Characteristics -
UNIT III	SWITCHED RELUCTANCE MOTORS	9
Steady state pe	eatures – Rotary and Linear SRMs - Principle of operation – formance prediction- Analytical method -Power Converters a tor position sensing – Sensor less operation – Closed loo	nd their controllers -
UNIT IV	PERMANENT MAGNET BRUSHLESS D.C. MOTORS	9
operation – Typ	gnet materials – Magnetic Characteristics – Permeance coe es – Magnetic circuit analysis – EMF and torque equations –Co otor characteristics and control.	
UNIT V		
	PERMANENT MAGNET SYNCHRONOUS MOTORS	9
Principle of ope Synchronous R	PERMANENT MAGNET SYNCHRONOUS MOTORS eration – Ideal PMSM – EMF and Torque equations – Armat eactance – Sinewave motor with practical windings - naracteristics - Power controllers - Converter Volt-ampere requ	ure reaction MMF - Phasor diagram -
Principle of ope Synchronous R	eration – Ideal PMSM – EMF and Torque equations – Armat eactance – Sinewave motor with practical windings -	ure reaction MMF - Phasor diagram -
Principle of ope Synchronous R	eration – Ideal PMSM – EMF and Torque equations – Armat eactance – Sinewave motor with practical windings -	ure reaction MMF - Phasor diagram - uirements.
Principle of ope Synchronous R Torque/speed c TEXT BOOKS:	eration – Ideal PMSM – EMF and Torque equations – Armat eactance – Sinewave motor with practical windings - naracteristics - Power controllers - Converter Volt-ampere requ ller, 'Brushless Permanent Magnet and Reluctance Motor Driv	ure reaction MMF - Phasor diagram - uirements. TOTAL: 45 PERIODS
Principle of ope Synchronous R Torque/speed c TEXT BOOKS: 1. T.J.E. M Oxford,	eration – Ideal PMSM – EMF and Torque equations – Armat eactance – Sinewave motor with practical windings - naracteristics - Power controllers - Converter Volt-ampere requ ller, 'Brushless Permanent Magnet and Reluctance Motor Driv	ure reaction MMF - Phasor diagram - uirements. TOTAL: 45 PERIODS res', Clarendon Press
Principle of ope Synchronous R Torque/speed c TEXT BOOKS: 1. T.J.E. M Oxford, 2. 2. T. Ke	ration – Ideal PMSM – EMF and Torque equations – Armat eactance – Sinewave motor with practical windings - naracteristics - Power controllers - Converter Volt-ampere requ iller, 'Brushless Permanent Magnet and Reluctance Motor Driv 1989. njo, 'Stepping Motors and their Microprocessor Controls', Clar	ure reaction MMF - Phasor diagram - uirements. TOTAL: 45 PERIODS res', Clarendon Press

COURSE CODE:	COURSE TITLE:	L	Т	Р	С						
10212EE136	FLECTROMAGNETIC INTERFERENCE AND										
COURSE CATEGO	RY: Programme Elective										
PREAMBLE: To m	ake the student understand electromagnetic interfe	rence an	id compa	atibility							
PREREQUISITE CO	OURSES: Electromagnetic Theory										
COURSE EDUCAT	IONAL OBJECTIVES:										
The objectives of	the course are to,										
Understa	nd the EMC regulation and methods of eliminating i	nterferei	nces								
• Familiar v	vith the Methods of grounding of cable shield										
Understa	nd the concept of filtering and shielding										
	nowledge on types of digital circuit noises										
 Impart kr 	iowieuge on types of digital circuit hoises										

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the EMC regulation and methods of eliminating interferences	К2
CO2	Explain the Methods of grounding of cable shield	К2
CO3	Describe the concept of filtering and shielding	К2
CO4	Outline the types of digital circuit noises	К2
CO5	Illustrate about the electrostatic discharge and standards.	К2

Cos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L		L								L	М	
CO2	Н										L		М	
CO3	Н	н									L		М	
CO4	Н		М									L	М	
CO5	Н	н		Н								L	М	
		•								•	•	•		

COURSE CONTENT:		
UNIT I	INTRODUCTION	9
	onducted and radiated interference - Characteris patibility (EMC) - EMC regulation- typical noise path - us ng interferences.	
UNIT II	METHOD OF HARDENING	9
transfer impedance,	coupling - inductive coupling- shielding to prevent mag Grounding – safety grounds – signal grounds -single prid grounds- functional ground layout – grounding of o	point and multipoint
UNIT III	BALANCING, FILTERING AND SHIELDING	9
- near and far field	ling - decoupling filters - amplifier filtering – high freque s - shielding effectiveness - absorption and reflection onductive gaskets, windows and coatings - grounding of	n loss, Shielding with
UNIT IV	DIGITAL CIRCUIT NOISE AND LAYOUT	9
	ne domain - analog versus digital circuits - digital logic t ground noise – power distribution-noise voltage object uts - logic families.	
UNIT V	ELECTROSTATIC DISCHARGE, STANDARDS AND LABORATORY TECHNIQUES	9
versus EMC, Industria	uman body model - static discharges-ED protection in ec al and Government standards – FCC requirements – CISF s - Measurement methods for field strength - EMI.	
		TOTAL: 45 PERIODS
TEXT BOOKS:		
1. Henry W.Ott,	'Noise Reduction Techniques in Electronic Systems', Joh	n Wiley & Sons, 1989.
	ser, 'Principles of Electro-magnetic Compatibility', Arter, Norwood, MA 020062 USA) 1987.	ech House, Inc. (685
REFERENCE BOOKS:		
-	Ailleta J. and Ricketts.L.W., 'EMP Radiation and Protect ns, USA 1976.	tive Techniques', John

10	JRSE ()212EE	CODE:					DURSE D STAT						P	C
10	/21200	.137				SOLI	USIAI	E DRI	/ES			3 0	0	3
OURS	E CATI	EGORY	: Progr	ramme	e Electi	ve								
			•						•	on of ele s of cont		rives co	ontrolled	d from
REREQ	JISITE	COURS	SES: Ele	ectrica	l Mach	nines, P	ower l	Electro	onics					
COURS	E EDU	CATION	NAL OB	BJECTIN	/ES:									
ſhe obj	ective	s of the	e cours	e are t	:0,									
•	Study probl	and a ems.	nalyze	the o	peratio	on of t	the co	nverte	r/chop	per fed	dc driv	ve and	r-load solve to solve tor drive	e simpl
•	Unde	rstand	the dif	fferend	ces bet	tween	synchr	ronous	moto		and ind		motor d	
•	Analy drive		desig	n the o	curren	t and s	speed	contro	ollers fo	or a clos	sed loo	p solid	-state D	C moto
COURS	E OUT	COMES	6:											
Upo	on the	succes	sful co	mpleti	ion of t	the cou	irco ct		ط الزيد م	a abla t	<u>م</u> .			
							lise, si	udent	s will b	e able to	5.			
CO Nos							comes				Kn	on revis	e Level (sed Bloo onomy)	om's
	•	xplain	the cor	ncept o	Cour	se Out	comes	;			Kn	on revis	sed Bloo	om's
Nos	• E	xplain llustrate	e the o	perati	Cour s of AC A on of t	se Out	comes C drive	systen	n		Kn	on revis	sed Bloo onomy)	om's
Nos CO1		llustrato lrive an	e the o d to sc the op	perati olve sir	Cours of AC A on of t nple pr	se Out ND DC he con roblem	comes C drive nverter	systen / chop	n oper fe			on revis	sed Bloo onomy) K2	om's
Nos CO1 CO2	E E dd	ilustrato lrive an xplain t	e the o d to so the op rives	perati olve sir eratior	Cours of AC A on of t nple pr n of bo	se Out ND DC he con roblem th clas	C drive Nverter ns sical a	systen / chop nd mod	n oper fe dern in	d dc duction		on revis	K2 K2	om's
Nos CO1 CO2 CO3	- E 11 d 3 E n 1 1	llustrate lrive an Explain t notor d	e the o d to so the op rives et the o the op	operati olve sir eratior operati	Cours of AC A on of t nple pr n of bo on of s	se Out ND DC he con roblem th clas	comes C drive overter osical an	systen / chop nd moo motor	n oper fe dern in drives	d dc duction		on revis	K2 K2 K2 K2	om's
Nos CO1 CO2 CO3 CO4 CO5	- E - II d - II d - II - II - II - II - II	llustrate lrive an xplain notor d nterpre	e the o d to so the op- rives et the op- ions.	operation eration operation eration	Cours of AC A on of t n of bo on of s n of spe	se Out ND DC he con roblem th clas synchro ecial m	comes C drive overter osical an	systen / chop nd moo motor	n oper fe dern in drives	d dc duction		on revis	K2 K2 K2 K2 K2 K2 K2	om's
Nos CO1 CO2 CO3 CO4 CO5	- E - II d - II d - II - II - II - II - II	llustrato Irive an Explain notor d nterpre Explain pplicat	e the o d to so the op- rives et the op- ions.	operation eration operation eration	Cours of AC A on of t n of bo on of s n of spe	se Out ND DC he con roblem th clas synchro ecial m	comes C drive overter osical an	systen / chop nd moo motor	n oper fe dern in drives	d dc duction		on revis	K2 K2 K2 K2 K2 K2 K2 K2	om's
Nos CO1 CO2 CO3 CO4 CO5 CORREI	· E d g E n l l l LATIO	llustrati Irive an Explain f notor d Interpre Explain f pplicat	e the o d to so the op- rives t the op- ions. Ds WIT	operation eration operati eration	Cours of AC A on of t nple pr n of bo on of s n of spo	se Out ND DC he con roblem th clas synchro ecial m	comes C drive overter osical an onous o nachine	systen / chop nd motor e drives	n oper fe dern in drives s and it	d dc duction ts		on revis	K2 K2 K2 K2 K2 K2 K2 K2	om's
Nos CO1 CO2 CO3 CO4 CO5 CO5 CO7 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5	E E B B B B C C C C C C C C C C C C C C	llustrate irve an ixplain in notor d nterpre ixplain i pplicat N OF CO	e the o d to sc the op rives t the op ions. Ds WIT PO3	operation eration operati eration	Cours of AC A on of t nple pr n of bo on of s n of spo	se Out ND DC he con roblem th clas synchro ecial m	comes C drive overter osical an onous o nachine	systen / chop nd motor e drives	n oper fe dern in drives s and it	d dc duction ts	PO11	on revis Tax	K2 K2 K2 K2 K2 K2 K2 K2 F2 F501	PSO2
Nos CO1 CO2 CO3 CO4 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5	- E - II - II - II - II - II - II - II -	llustrate Irive an Explain to notor d Interpre Explain to pplicat N OF CO H	e the o d to so the op- rives et the op- ions. Ds WIT PO3 L	operation eration operati eration	Cours of AC A on of t nple pr n of bo on of s n of spo	se Out ND DC he con roblem th clas synchro ecial m	comes C drive overter osical an onous o nachine	systen / chop nd motor e drives	n oper fe dern in drives s and it	d dc duction ts	Кпо () () () () () () () () () ()	PO12	K2 K2 K2 K2 K2 K2 K2 K2 K2 K2 K2 K2 K2 K	PSO2
Nos CO1 CO2 CO3 CO4 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5	- E 11 d F F F F F F F F F F F F F H H	llustrate Irive an Explain f Interpre Explain f Policat N OF CO H H H	e the o d to so the op rives et the op ions. Ds WIT PO3 L M	operation eration operati eration	Cours of AC A on of t nple pr n of bo on of s n of spo	se Out ND DC he con roblem th clas synchro ecial m	comes C drive overter osical an onous o nachine	systen / chop nd motor e drives	n oper fe dern in drives s and it	d dc duction ts	Кп. 	PO12	K2 K2 K2 K2 K2 K2 K2 K2 K2 K2 K2 K2 K2 K	PSO2

UNIT I	FUNDAMENTALS OF ELECTRIC DRIVES	9
Torque-sp motor fo	e of electric drives – Parts and choice of electrical drives – Status beed characteristics of motor and load – Selection of motor power ra r heating and cooling – Classes of duty cycle – Determination of m rives – Modes of operation – Speed control and drive classifications	ating – Thermal model o notor rating – Control o
UNIT II	CONVERTER / CHOPPER FED DC MOTOR DRIVE	9
separatel	cate and transient analysis of the single and three phase fully or y excited D.C motor drive – Continuous and discontinuous conductio – Converter control – Chopper-fed D.C drive – Steady-state analysis - rive.	n mode – Multiquadran
UNIT III	INDUCTION MOTOR DRIVES	9
single-pha voltage c resistance	and performance of three-phase induction motor – Operation with un asing and unbalanced rotor impedance – Starting – Braking – Tra control –Adjustable frequency control of VSI and CSI fed induction e control – Slip-power recovery drives – Open loop Volts/Hz control Vector control of induction motor – Block diagram of closed loop driv	ansient analysis – Stato on motor – Static roto rol – Principle of vecto
UNIT IV	SYNCHRONOUS MOTOR DRIVES	9
Onon las		
synchron power fa	p Volts/Hz control and self-control of CSI and VSI fed synchronous mo ous motor – Microprocessor based synchronous motor control – Ma actor control – Permanent magnet (PM) synchronous motor – ous Motor (PMSM).	arginal angle control an
synchron power fa	ous motor – Microprocessor based synchronous motor control – Ma actor control – Permanent magnet (PM) synchronous motor –	arginal angle control an
synchron power fa Synchron UNIT V Brushless	bus motor – Microprocessor based synchronous motor control – Ma actor control – Permanent magnet (PM) synchronous motor – ous Motor (PMSM). BLDC, STEPPER AND SWITCHED RELUCTANCE MOTOR DRIVES DC motor drives and its applications – Variable reluctance and per ives – Operation and control of switched reluctance motor – Applica	erginal angle control an vector control of PN 9 manent magnet steppe
synchron power fa Synchron UNIT V Brushless motor Dr	bus motor – Microprocessor based synchronous motor control – Ma actor control – Permanent magnet (PM) synchronous motor – ous Motor (PMSM). BLDC, STEPPER AND SWITCHED RELUCTANCE MOTOR DRIVES DC motor drives and its applications – Variable reluctance and per ives – Operation and control of switched reluctance motor – Applica	erginal angle control an vector control of PN 9 manent magnet steppe
synchron power fa Synchron UNIT V Brushless motor Dr industrial	bus motor – Microprocessor based synchronous motor control – Ma actor control – Permanent magnet (PM) synchronous motor – ous Motor (PMSM). BLDC, STEPPER AND SWITCHED RELUCTANCE MOTOR DRIVES DC motor drives and its applications – Variable reluctance and per ives – Operation and control of switched reluctance motor – Applica drive.	arginal angle control an vector control of PN 9 manent magnet steppe ations, modern trends i
synchron power fa Synchron UNIT V Brushless motor Dr industrial TEXT BOC	bus motor – Microprocessor based synchronous motor control – Ma actor control – Permanent magnet (PM) synchronous motor – ous Motor (PMSM). BLDC, STEPPER AND SWITCHED RELUCTANCE MOTOR DRIVES DC motor drives and its applications – Variable reluctance and per ives – Operation and control of switched reluctance motor – Applica drive.	arginal angle control an vector control of PN 9 manent magnet steppe ations, modern trends i TOTAL: 45 PERIOD
synchron power fa Synchron UNIT V Brushless motor Dr industrial TEXT BOC 1. B	Dus motor – Microprocessor based synchronous motor control – Ma actor control – Permanent magnet (PM) synchronous motor – ous Motor (PMSM). BLDC, STEPPER AND SWITCHED RELUCTANCE MOTOR DRIVES DC motor drives and its applications – Variable reluctance and per ives – Operation and control of switched reluctance motor – Applica drive. DKS:	9 manent magnet steppe ations, modern trends i TOTAL: 45 PERIOD
synchron power fa Synchron UNIT V Brushless motor Dr industrial TEXT BOC 1. B 2. D	Dus motor – Microprocessor based synchronous motor control – Ma actor control – Permanent magnet (PM) synchronous motor – ous Motor (PMSM). BLDC, STEPPER AND SWITCHED RELUCTANCE MOTOR DRIVES DC motor drives and its applications – Variable reluctance and per ives – Operation and control of switched reluctance motor – Applica drive.	9 manent magnet steppe ations, modern trends i TOTAL: 45 PERIOD
synchron power fa Synchron UNIT V Brushless motor Dr industrial TEXT BOO 1. B 2. D REFEREN	Dus motor – Microprocessor based synchronous motor control – Ma actor control – Permanent magnet (PM) synchronous motor – ous Motor (PMSM). BLDC, STEPPER AND SWITCHED RELUCTANCE MOTOR DRIVES DC motor drives and its applications – Variable reluctance and per ives – Operation and control of switched reluctance motor – Applica drive. DKS: imal K. Bose, 'Modern Power Electronics and AC Drives', Pearson Educ ubey, G.K., 'Fundamentals of Electrical Drives', 2nd Edition, Narosa Pu	9 manent magnet steppe ations, modern trends i TOTAL: 45 PERIOD cation, 2002.
synchron power fa Synchron UNIT V Brushless motor Dr industrial TEXT BOC 1. B 2. D REFEREN 1. P 2. K	Dus motor – Microprocessor based synchronous motor control – Ma actor control – Permanent magnet (PM) synchronous motor – ous Motor (PMSM). BLDC, STEPPER AND SWITCHED RELUCTANCE MOTOR DRIVES DC motor drives and its applications – Variable reluctance and per ives – Operation and control of switched reluctance motor – Applica drive. DKS: imal K. Bose, 'Modern Power Electronics and AC Drives', Pearson Educ ubey, G.K., 'Fundamentals of Electrical Drives', 2nd Edition, Narosa Pu CE BOOKS:	arginal angle control an vector control of PN 9 manent magnet steppe ations, modern trends i TOTAL: 45 PERIOD cation, 2002. ublishing House, 2001.
synchron power fa Synchron UNIT V Brushless motor Dr industrial TEXT BOC 1. B 2. D REFEREN 1. P 2. K 21 3. V	Dus motor – Microprocessor based synchronous motor control – Ma actor control – Permanent magnet (PM) synchronous motor – ous Motor (PMSM). BLDC, STEPPER AND SWITCHED RELUCTANCE MOTOR DRIVES DC motor drives and its applications – Variable reluctance and per ives – Operation and control of switched reluctance motor – Applica drive. DKS: imal K. Bose, 'Modern Power Electronics and AC Drives', Pearson Educ ubey, G.K., 'Fundamentals of Electrical Drives', 2nd Edition, Narosa Pu CE BOOKS: illai, S.K., 'A First Course on Electrical Drives', Wiley Eastern Limited, 1 rishnan, R., 'Electric Motor and Drives Modelling, Analysis and Control	9 manent magnet steppe ations, modern trends i TOTAL: 45 PERIOD cation, 2002. ublishing House, 2001.

CO	URSE C	ODE:				COU	RSE TIT	TLE:			L	Т	Р	C			
10	0212EE	138			PRI	NCIPLE	ES OF R	OBOTI	CS		3	3 0 0 3					
OURS	E CATE	GORY:	Progra	mme E	lective							1	1				
		This connuction		•		basic	conce	pts of	roboti	cs and	their	design	manuf	acture			
PREREC	QUISIT		SES: M	icropro	ocessor	& Mic	rocontr	ollers									
OURS	E EDU	CATION	IAL OBJ	ECTIVE	S:												
he ob	jective	s of the	course	are to	,												
•	Unde	rstand 1	the bas	ic com	oonent	s of rot	oots an	d its se	nsors.								
٠	Know	the ba	sics of (Control	and ar	alysis o	of robo	tics mo	tion.								
•	Give a	a brief i	ntrodu	ction al	bout ar	tificial i	intellige	ence.									
•		basic p	-	-													
•	Famil	iar with	the ap	plicatio	ons of r	obots.											
		COMES															
Up	on the	succes	sful con	npletio	n of the	e cours	e, stud	ents wi	ll be at	ole to:							
CO Nos					Course	Outco	mes					•	.evel(I d Bloor nomy)				
CO:	1 D	escribe	the ba	sic con	nponen	its of ro	obots a	nd its s	ensors			К	2				
CO	2 E	Explain the basics of Control and analysis of robotics motion										к	2				
CO3	3	Illustrate the basics of artificial intelligence										К	2				
CO4	4 V	Write basic programming in robotics K3									3						
CO	5 C	outline	the app	licatio	ns of ro	bots						K	2				
ORRE	LATIO	N OF CC	Ds WITH	I POs A	ND PS	Os				1							
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO			

COS	104	PUZ	PU3	P04	PU5	P00	P07	PU0	P09	P010	PUII	PUIZ	P301	P302
CO1	н		L									L	Н	
CO2	н	М	L									М	Н	
CO3	Н		L									М	Н	L
CO4	Н	М	L									М	Н	М
CO5	н		L										Н	

UNIT I	INTRODUCTION	9
source, ir BASIC CO a) Manipi	on and robotics - Robot Anatomy - Classifications of Robots by DOF m Itelligence and application area. MPONENS OF ROBOTS Jators – Wrists - End effectors - Control units - Power units - Robot sen sensors - Proximity sensors - Ranger sensors - Tactile sensors - Visu Dobots.	sors;
UNIT II	ROBOT MOTION ANALYSIS AND CONTROL	9
	ion to manipulator kinematics - Homogeneous transformations ar tor path control - Robot dynamics - configuration of a robot controller	
UNIT III	ARTIFICIAL INTELLIGENCE	9
Sensing a system -	iques – fuzzy logic, neural network - LISP programming - AI and Roboti and digitizing function machine vision - Image processing and analy natural language processing - speech recognition - legged locomotior etworks computing.	vsis training and vision
UNIT IV	ROBOT PROGRAMMING	9
Methods space -	ROBOT PROGRAMMING of Robot programming - lead through programming methods - a robo motion interpolation - weight, signal and delay commands - Bran as of lead through methods.	bt program as a path ir
Methods space -	of Robot programming - lead through programming methods - a robo motion interpolation - weight, signal and delay commands - Bran	bt program as a path ir
Methods space - limitation	of Robot programming - lead through programming methods - a robo motion interpolation - weight, signal and delay commands - Bran is of lead through methods.	ot program as a path ir ching, capabilities and 9
Methods space - limitation	of Robot programming - lead through programming methods - a robo motion interpolation - weight, signal and delay commands - Bran is of lead through methods. APPLICAIONS OF ROBOT	ot program as a path ir ching, capabilities and 9
Methods space - limitation	of Robot programming - lead through programming methods - a robo motion interpolation - weight, signal and delay commands - Bran is of lead through methods. APPLICAIONS OF ROBOT handling - Processing operations - Assembly and inspection - Future app	ot program as a path ir ching, capabilities and 9 plication.
Methods space - I limitation UNIT V Material TEXT BOO 1. N	of Robot programming - lead through programming methods - a robo motion interpolation - weight, signal and delay commands - Bran is of lead through methods. APPLICAIONS OF ROBOT handling - Processing operations - Assembly and inspection - Future app	ot program as a path ir ching, capabilities and 9 olication. TOTAL: 45 PERIODS
Methods space - I limitation UNIT V Material TEXT BOO 1. N T 2. H	of Robot programming - lead through programming methods - a robo motion interpolation - weight, signal and delay commands - Bran is of lead through methods. APPLICAIONS OF ROBOT handling - Processing operations - Assembly and inspection - Future app DKS: Nikell P.Groover, Michell wein,Roger N. Nagal and Nicholas G.Orde	ot program as a path ir ching, capabilities and 9 olication. TOTAL: 45 PERIODS y, 'Industrial Robotics
Methods space - I limitation UNIT V Material TEXT BOO 1. N T 2. H 1	of Robot programming - lead through programming methods - a robo motion interpolation - weight, signal and delay commands - Bran is of lead through methods. APPLICAIONS OF ROBOT handling - Processing operations - Assembly and inspection - Future app DKS: Mikell P.Groover, Michell wein,Roger N. Nagal and Nicholas G.Orde echnology, Programming and Applications' Mc Graw Hill, 1987. arry H. Poole, 'Fundamentals of Robotics Engineering', Van Nostran	ot program as a path in ching, capabilities and 9 olication. TOTAL: 45 PERIOD y, 'Industrial Robotics
Methods space - limitation UNIT V Material TEXT BOO 1. N T 2. H 1 REFEREN	of Robot programming - lead through programming methods - a robomotion interpolation - weight, signal and delay commands - Branss of lead through methods. APPLICAIONS OF ROBOT handling - Processing operations - Assembly and inspection - Future approximation - Future approximation - Processing operations - Assembly and inspection - Future approximation - Robot - R	ot program as a path i ching, capabilities an 9 olication. TOTAL: 45 PERIOD y, 'Industrial Robotics
Methods space - I limitation UNIT V Material TEXT BOO 1. N T 2. H 1 REFEREN 1. V	of Robot programming - lead through programming methods - a robomotion interpolation - weight, signal and delay commands - Branes of lead through methods. APPLICAIONS OF ROBOT handling - Processing operations - Assembly and inspection - Future approximation and Applications' Mc Graw Hill, 1987. OKS: Mikell P.Groover, Michell wein,Roger N. Nagal and Nicholas G.Orde echnology, Programming and Applications' Mc Graw Hill, 1987. arry H. Poole, 'Fundamentals of Robotics Engineering', Van Nostran 989. CE BOOKS:	ot program as a path i ching, capabilities an 9 olication. TOTAL: 45 PERIOD y, 'Industrial Robotic:

CC	DURSE	CODE:				COL	JRSE TI	TLE:			L	Т	Р	С
1	L0212E	E139			E	EMBED	DED SY	STEMS			3	0	0	3
COUR	RSE CA	FEGORY	/: Progr	ramme	Electiv	e								
chara	cterist	ics and		itions c	of embe				-	a fair Engine		-		-
PRER	EQUISI	TE COL	JRSES:	Microp	rocesso	or & Mi	icrocon	trollers	;					
COUR	RSE ED	JCATIO	NAL O	BJECTI	/ES:									
The o	bjectiv	es of th	ne cours	se are t	:0,									
•			ents all ind emb	•		-			ment c	of an en	nbedde	d syste	em, incl	uding
•										ems an				
•			d and ex embedo	•				practic	e indu	strial er	nbedde	ed syste	ems an	d
•		0	d the op			•		s.						
COUR	RSE OU	тсоме	S:											
U	pon th	e succe	essful co	ompleti	ion of t	he cou	rse, stu	idents v	vill be	able to:				
CO Nos					Cours	e Outco	omes				(Based	edge Le on revi Taxono	sed
CO1		•	he defir ed Syste		compo	onents	and red	quirem	ents of	the			К2	
CO2	,		the pro edded S			ecture	and m	emory	organis	sation o	f		K2	
CO3	2	•	the inte ed Syste		g and c	ommur	nicatior	n techn	iques c	of the			КЗ	
CO4		oplain tl vstem.	he I/O,	testing	and ap	oplicatio	ons of I	the Eml	beddec	1			К2	
CO5	5		the def and dev										К2	
CORR	ELATIO	ON OF O	COs WI	TH POs	AND P	SOs								
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н		L		L								L	
CO2	Н		L		L						L	L	М	L
CO3	Н		М	L	L	L							М	L
CO4	Н	М	Н	L	L	L					Μ	L	М	М
CO5	Н	М	М		L								М	М

COURS	CONTENT:	
UNIT I	INTRODUCTION TO EMBEDDED SYSTEMS	9
	ction to Embedded Systems - definitions and constraints; Struct re and Processor Requirements - Device and Device drivers - Ex	•
UNIT II	EMBEDDED PROCESSORS & MEMORY	9
•	Purpose Processors - General Purpose Processors - Architectural Issue hitectures - Memory - Memory Organization.	s: ARM, PIC, CISC, RISC,
UNIT II	EMBEDDED INTERFACING & COMMUNICATION	9
Parallel	/ Interfacing - Bus, Protocols & ISA Bus Interfacing - USB Interfacing Data Communication - Serial Data Communication - Network Com nication.	
υνιτ ιν	EMBEDDED SYSTEM I/O, TESTING & APPLICATION	9
- Applic	Interrupts – DMA – USB & IrDA - Testing - BIST - Open-loop and Close ation Examples: Washing Machine, Automotive Systems, Auto-focus ner, Elevator Control System, ATM System.	• •
UNIT V	REAL TIME EMBEDDED SYSTEM	9
Structu	ction - Definition & characteristics of real-time systems - Issues in e and performance measures of a real time system - Classical U ms - Uniprocessor scheduling of IRIS tasks - Mode changes - Fault tole	niprocessor scheduling
		TOTAL: 45 PERIODS
TEXT BO	OOKS:	
1.	Raj Kamal, 'Embedded Systems', Tata McGraw Hill, 1 st Edition, 2004	
2.	David Simon, 'An Embedded Software Primer', Addison Wesley, 2000.	
REFERE	NCE BOOKS:	
1.	R. Mall, 'Real Time Systems Theory and Practice', Pearson, 2008.	
1. 2.	R. Mall, 'Real Time Systems Theory and Practice', Pearson, 2008. Jean J.Labrosse, 'Embedded System Building Blocks', CMP Books, 2 nd E	dition, 1999
-	•	

CO	URSE C	ODE:				COU	RSE TIT	TLE:			L	Т	Р	C
10	0212EE	140		EMBE	DDED (CONTRO	OL OF E	LECTRI	CAL DF	RIVES	3	0	0	3
OURS	E CATE	GORY:	Progra	mme E	lective									
		••					•	industr	y for	rectific	ation o	of poly	phase	supp
oltage	e and co	ontrollu	ng of m	otor sp	beed, th	nermal	heating	З.						
REREC	QUISITI	E COUR	SES: M	icropro	ocessor	& Micr	rocontr	ollers						
OURS	E EDUC	ATION	AL OBJ	ECTIVE	S:									
he obj	jectives	ofthe	course	are to	,									
•	Under	stand a	about e	lectrica	al drive	system	าร							
٠	Acqui	re knov	vledge	on ac a	ind dc e	electric	drives							
٠	Know	the tra	nsient	and fre	quency	respo	nse of a	ac and o	dc elec	tric driv	es			
•	Under	stand t	he clos	ed loo	p contr	ol of el	ectrica	drives						
٠	Know	the ap	olicatio	ns of m	nicroco	ntroller	r and D	SP in el	ectrica	l drives				
OURS	E OUT	OMES	:											
Up	on the	success	ful con	npletio	n of th	e cours	e, stud	ents wi	ll be ab	ole to:				
со						•							dge Le	
Nos	•				Cours	e Outco	omes				-		on revi Taxono	
604														<u>, , , , , , , , , , , , , , , , , , , </u>
CO1	. Ex	plain a	bout th	e basic	ćs char	acterist	tics of e	electrica	al moto	ors.			K2	
CO2	,	utline tl nsidera		s of AC	and D	C electi	ric drive	es and i	ts stab	ility			K2	
CO3			the ph y and ti		-		ofeleo	ctrical d	rives to	o find			K2	
CO4	Ex	plain tł	ne close	ed loop	contro	ol of ele	ctrical	drives.					K2	
CO5			ze the a f electr	• •		fmicro	control	ler and	DSP ba	ased			K2	
ORRE	LATION	I OF CC	s WITH	l POs A	AND PS	Os					<u> I </u>			
	001	003	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
COs	PO1	PO2	PU5	FU4	FOJ	100	107	100	FUS	1010	1011	1012	1301	F 30

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н											L	Н	
CO2	Н											L	Н	
CO3	Н	М	L									М	Н	
CO4	Н	М	L									Μ	Н	
CO5	Н	М	L								L	Μ	Н	

UNIT I	INTRODUCTION	9
	drive systems - solid state devices - solid state switching circuits – o - speed torque characteristics of electric motors – PWM techniques	
UNIT II	AC AND DC ELECTRIC DRIVES	9
	tion – classification of electric drives – dynamic conditions of a ations of electrical drives – dc choppers, inverters, cycloconverter motor.	
UNIT III	POWER CONVERTERS	9
systems,	n motor drives – synchronous motor drives – dc drives – block diagrar , signal flow graph representation of the systems, transient respon of controlled drives.	•
UNIT IV	CLOSED LOOP CONTROL OF ELECTRICAL DRIVES	9
criterion	- Assessment of relative stability using Nyquist criterion - closed lo	op frequency response -
	ty analysis in frequency domain – PID controllers – feedback comp design.	
sensitivit system d UNIT V Introduc function microcor applicati	ty analysis in frequency domain – PID controllers – feedback comp design.	9 – application areas and of electric drives using variable speed drives -
sensitivit system d UNIT V Introduc function microcor applicati	ty analysis in frequency domain – PID controllers – feedback comp design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control s of microcontroller and dsp in drive technology – control controller and dsp – control system design of microcontroller based fons in textile mills, steel rolling mills, cranes and hoist drives, ce	9 – application areas and of electric drives using variable speed drives -
sensitivit system d UNIT V Introduc function microcor applicati	ty analysis in frequency domain – PID controllers – feedback comp design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control s of microcontroller and dsp in drive technology – control controller and dsp – control system design of microcontroller based fons in textile mills, steel rolling mills, cranes and hoist drives, ce tools, coal mills, paper mills, centrifugal pumps, turbo compressors.	9 – application areas and of electric drives using variable speed drives - ement mills, sugar mills
sensitivit system of UNIT V Introduc function microcor applicati machine TEXT BO 1.	ty analysis in frequency domain – PID controllers – feedback comp design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control s of microcontroller and dsp in drive technology – control controller and dsp – control system design of microcontroller based fons in textile mills, steel rolling mills, cranes and hoist drives, ce tools, coal mills, paper mills, centrifugal pumps, turbo compressors.	9 – application areas and of electric drives using variable speed drives - ement mills, sugar mills TOTAL: 45 PERIODS
sensitivit system of UNIT V Introduc function microcor applicati machine TEXT BO	ty analysis in frequency domain – PID controllers – feedback comp design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control s of microcontroller and dsp in drive technology – control of introller and dsp – control system design of microcontroller based ions in textile mills, steel rolling mills, cranes and hoist drives, ce tools, coal mills, paper mills, centrifugal pumps, turbo compressors. POKS: Vedam Subrahmanyam, 'Electric Drives – Concepts And Applicati	9 – application areas and of electric drives using variable speed drives - ement mills, sugar mills TOTAL: 45 PERIODS ons', Tata McGraw Hil
sensitivit system of UNIT V Introduc function microcor applicati machine TEXT BO	ty analysis in frequency domain – PID controllers – feedback comp design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control s of microcontroller and dsp in drive technology – control controller and dsp – control system design of microcontroller based ions in textile mills, steel rolling mills, cranes and hoist drives, centrols, coal mills, paper mills, centrifugal pumps, turbo compressors. POKS: Vedam Subrahmanyam, 'Electric Drives – Concepts And Applicati Publishing Company Limited, New Delhi, 2003 edition.	9 – application areas and of electric drives using variable speed drives - ement mills, sugar mills TOTAL: 45 PERIODS ons', Tata McGraw Hil
sensitivit system of UNIT V Introduc function microcor applicati machine TEXT BO 1. N REFEREN 1. I	ty analysis in frequency domain – PID controllers – feedback comp design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control s of microcontroller and dsp in drive technology – control of ntroller and dsp – control system design of microcontroller based ions in textile mills, steel rolling mills, cranes and hoist drives, ce tools, coal mills, paper mills, centrifugal pumps, turbo compressors. POKS: Vedam Subrahmanyam, 'Electric Drives – Concepts And Applicati Publishing Company Limited, New Delhi, 2003 edition. John. B. Peatman, 'Design with PIC Microcontrollers', Pearson Educatio	9 – application areas and of electric drives using variable speed drives - ement mills, sugar mills TOTAL: 45 PERIODS ons', Tata McGraw Hil
sensitivit system of UNIT V Introduc function microcor applicati machine TEXT BO 1. V 2. J REFEREN 1. I L 1. I L	ty analysis in frequency domain – PID controllers – feedback comp design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control s of microcontroller and dsp in drive technology – control controller and dsp – control system design of microcontroller based ions in textile mills, steel rolling mills, cranes and hoist drives, cere tools, coal mills, paper mills, centrifugal pumps, turbo compressors. POKS: Vedam Subrahmanyam, 'Electric Drives – Concepts And Applicati Publishing Company Limited, New Delhi, 2003 edition. John. B. Peatman, 'Design with PIC Microcontrollers', Pearson Education NCE BOOKS: Mohammed. A. El-Sharkawi, 'Fundamentals of Electrical Drives',	9 – application areas and of electric drives using variable speed drives - ement mills, sugar mills TOTAL: 45 PERIODS ons', Tata McGraw Hil on, Asia 2004. , Books/Cole, Thomson

		DE. 1034	255144			COU	RSE TIT	LE:			L	Т	Р	С
LUURS	ECOI	DE: 1021 3	266141		VI	SI SYS	FEM &	DESIGN	N		3	0	0	3
COURS	E CAT	FEGORY:	Progra	mme E	lective									
PREAM	BLE:	This cou	rse pro	vides a	an intro	ductio	n to th	e desig	n and i	mplem	entatic	on of V	LSI circo	uits for
comple	x dig	ital syste	ms and	the fo	cus is o	n CMO	S techn	ology.						
PREREC	QUISI	TE COUR	SES: El	ectroni	c Circui	ts, Line	ar Inte	grated	Circuits	6				
COURS	E EDI	JCATION	AL OBJ	ECTIVE	S:									
The obj	ectiv	es of the	course	are to	,									
•	Knov	w the bas	sic silico	on sem	icondu	ctor teo	hnolog	y with	its phys	sical de	sign			
•	Und	erstand t	he tech	nniques	s of chi	o desigi	n using	progra	mmabl	e devic	es.			
•	•	uire knov	0			0								
•		erstand t		•	-	-		•						
•		w the cor	•	or aigit	ai syste	m usin	g Hard	ware De	escripti	on Lan	guage.			
		TCOMES e success		onletio	n of the	COURS	a stude	ante wil	ll ha ah	le to:				
		e success		ipietio		course	e, stuut				vel of l	earnin	g doma	in
CO Nos				Cou	irse Ou	tcome	S				sed on	revise	d Bloor	
	-										ta	xonom	y)	
CO1	L	Explain (CMOS T	echnol	ogy							К2		
CO2	2	Describe	CMOS	Chip D	esign T	echniq	ues.					К2		
COS	3	Elaborat	e vario	us CMC	DS testi	ng strat	tegies.					К2		
CO4	ł	Describe devices	the d	igital c	lesign	using P	rogram	nmable	logic			K2		
COS)	Illustrate Languag		gital ciı	rcuits u	sing Ha	irdware	e Descri	iption			K2		
CORRE	LATIC	ON OF CC)s WITH	I POs A	ND PS	Os								
COs	PO	L PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	н	м								L		L	Н	L
CO2	 н	M								L			н	L
CO3	Н	М	М							L			Н	L
CO4	н	М	Μ							L	L	L	Н	L

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М								L		L	Н	L
CO2	Н	Μ								L			Н	L
CO3	Н	Μ	Μ							L			н	L
CO4	Н	М	М							L	L	L	Н	L
CO5	Н	М	М		L					L	L	L	Н	L

UNIT I	CMOS TECHNOLOGY	9
An Overview o SOI process. C rules, Stick Dia	f silicon semiconductor technology, Basic CMOS technology ircuit Elements: Resistors, Capacitors, EAROM. Latch Up a gram, Physical Design: Basic Concepts, CAD tools. Physical esign hierarchies.	nd Prevention. Layout Design
UNIT II	CMOS CHIP DESIGN	9
Logic Design v	vith CMOS: MOSFETS as switches, Basic logic gates in CM	1OS and Complex logic gates
Transmission g	ates: Muxes and latches. CMOS chip design options: full cus	stom ASIC'S, semi-custom ASIC
and programn	nable ASIC. Programmble logic structures: 22V10, progra	amming PAL's, Programmable
interconnect R	eprogrammable GA: Xilinx programmable GA, Features an	d internal structure of CPLDs
FPGAs, designi	ng with CPLDs and FPGAs. Introduction to IC floor planning	and testing, ASIC Design flow.
UNIT III	CMOS TESTING	9
Need for test	ing, manufacturing test principles, Design strategies for	r test: design for testability
combinational	logic testing, sequential logic testing, fault model types, A	TPG, Boundary scan test, buil
in self-test, DF	T schemes. Chip level and system level test techniques.	
UNIT IV	SYNCHRONOUS DESIGN USING PROGRAMMABLE DEVICES	9
designing a sy	lize a sequential circuit, Programmable logic devices: RON nchronous sequential circuit using a GAL, realization sta- witching matrix, FPGA Xilinx 2000, Xilinx 3000.	
UNIT V	SPECIFICATION USING VERILOG HDL	9
Basic concepts gate delays.	, language features, VLSI design flow, identifiers, arrays, ir	nstances, value set, ports, and
Types of Verilo descriptions.	og description – structural gate level RTL, data flow RTL and	structural and behavioral RT
-	e level RTL: Half adder, Full adder, Ripple carry adder, N quality detector, D-latch, D Flip Flop, JK flip flop.	1ultiplexer, encoder, decoder
Data flow RTL:	Operators, Combinational logic and sequential logic example	es.
	behavioral RTL: Delays and Timing controls, Procedural Aultiplexer, Combinational logic and sequential logic exampl	0
		TOTAL: 45 PERIODS
TEXT BOOKS:		
ILAI BOOKS.		
	& E Shraghian 'Principles of CMOS VLSI Design' Addison We	sley, 2 nd Edition, 1993

	URSE CODE:	COURSE TITLE:	L	Т	Р	C
10	0212EE142	WEARABLE ELECTRONICS	3	0	0	3
OURSE	CATEGORY: Program	mme Elective				
		ctronics mainly deals with the fundamenta lothing product development.	ls of e	electror	nics and	l th
REREQU	JISITE COURSES: Ba	sic Electronics and Measurement Engineering				
OURSE	EDUCATIONAL OBJ	ECTIVES:				
ne obje	ctives of the course	are to,				
• L	earn about fundam	entals of wearable technology and different int	erfacin	g techn	ologies	
		lectrostatically generated nanofibers	·	0	U	
• [Describe sensing fab	pric and smart fabric for health care				
• [Discuss the role of st	train sensor in wearable devices				
		train sensor in wearable devices applications of wearable technologies				
• K						
• K	Know the different a					
• K	Know the different a	applications of wearable technologies		n revise	Level (Ba d Bloom nomy)	
• K OURSE Upor CO	Common the different a OUTCOMES: In the successful com	applications of wearable technologies npletion of the course, students will be able to: Course Outcomes concept of wearable technology and different		n revise Taxoi	d Bloom	
• K OURSE Upor CO Nos.	Consider the different a Constant of the successful constant of the success	applications of wearable technologies npletion of the course, students will be able to: Course Outcomes concept of wearable technology and different		n revise Taxoi k	d Bloom nomy)	
 K OURSE Upor CO Nos. CO1 	Consider the different and a constant of the successful considered and the basic interfacing method discuss about pro-	applications of wearable technologies npletion of the course, students will be able to: Course Outcomes concept of wearable technology and different pdologies.		n revise Taxoi k	d Bloom nomy)	
• K OURSE Upor CO Nos. CO1 CO2	Consideration of the successful consideration of the successful consideration of the successful consideration of the successful consistence of the successfu	applications of wearable technologies npletion of the course, students will be able to: Course Outcomes concept of wearable technology and different odologies.		n revise Taxoi k k	d Bloom nomy) (2	

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L										L	Н	
CO2	Н	L						L					Н	
CO3	Н	L						L					Н	
CO4	Н	L						L					Н	
CO5	Н	L				L	L	L					Н	
CO5	H	L				L	L	L					Н	<u> </u>

COURSE CONTEN	Г:	
UNIT I	INTRODUCTION	9
	arrent and Future Wearable technology - Interfacing Tech Management Technologies - Energy Management Techn	-
UNIT II	ELECTROSTATICALLY GENERATED NANOFIBRES	9
yarns and fabrio	ctrospinning Process-Background- Controlling the diameter o cs - Electroactive nanofibers - Inherently conductive p Pyrolysis and coating of nanofibers	
UNIT III	ELECTROACTIVE FABRICS AND WEARABLE MAN- MACHINE INTERFACES	9
	sing Fabrics – Actuating fabrics- Smart Fabrics for Health care extiles for kinesthetic interfaces.	- Smart Fabric for motion
UNIT IV	STRAIN SENSORS IN WEARABLE DEVICES	9
	tile Based Strain Sensors for Wearable Devices - Fabrication on the strain Sensors	of Textile Based Sensors -
UNIT V	APPLICATIONS	9
	lonitoring Software - Design and Development of Flexible S nmunication apparel, Protection and Safety aspects of using el	-
		TOTAL: 45 PERIODS
TEXT BOOKS:		
1. Xiaoming	Tao, 'Wearable Electronics and Photonics', CRC Press, 2005	
	Mukhopadhyay, 'Wearable Electronics Sensors: for Safe and He nal Publishing, 2015	ealthy Living', Springer

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10212EE143		3	0	0	3
COURSE CATEGORY: Pro	gramme Elective	·			
PREAMBLE: To study th	e concept of virtual instrumentation using softwa	are langua	age		
PREREQUISITE COURSE	: Measurement and Instrumentation				
COURSE EDUCATIONAL	OBJECTIVES:				
The objectives of the co	urse are to,				
 Represent and r 	eview signals in digital domain				
Understand the	fundamentals of virtual instrumentation				
• Familiar with th	e standards of VI systems				
Impart the conc	epts of graphical programming				
 Identify the ana 					

COURSE OUTCOMES:

• Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's)
CO1	Represent and review signals in digital domain	К2
CO2	Describe the fundamentals of virtual instrumentation	К2
CO3	Explain about the standards of VI systems	К2
CO4	Illustrate the concepts of graphical programming	К2
CO5	Identify the analysing tools and simple programming in VI	КЗ

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	н	L											Н	
CO2	Н	L											Н	
CO3	Н	L											Н	
CO4	Н	М	L									L	Н	
CO5	Н	Н	L		М						L	М	Н	L

	CONTENT:	
UNIT I	REVIEW OF DIGITAL INSTRUMENTATION	9
•	ntation of analog signals in the digital domain – Review of quantian makes and hold –Sampling theorem – ADC and DAC	zation in amplitude and
UNIT II	FUNDAMENTALS OF VIRTUAL INSTRUMENTATION	9
Resolution inputs –	of virtual instrumentation – PC based data acquisition – Typical on and sampling frequency – Multiplexing of analog inputs – Single Different strategies for sampling of multi-channel analog inputs – Co se of timer-counter and analog outputs on the universal DAQ card	e-ended and differentia
UNIT III	CLUSTER OF INSTRUMENTS IN VI SYSTEM	9
	ng of external instruments to a PC – RS232 – RS 422 – RS 485 – U – ISO-OSI model for serial bus – Introduction to bus protocols of MC	
UNIT IV	GRAPHICAL PROGRAMMING ENVIRONMENT IN VI	9
– Digital	of graphical programming – Lab-view software – Concept of VIs ar – Analog – Chart – Oscilloscopic types – Loops – Case and sequen rays – Formulae nodes – Local and global variables – String and file	ce structures – Types of
	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI	9 9
UNIT V Fourier t temperat		9 filtering tools – Simple ation – Simulation of a
UNIT V Fourier t temperat	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI transform – Power spectrum – Correlation – Windowing and t ture indicator – ON/OFF controller – PID controller – CRO emul- econd order system – Generation of HTML page	9 filtering tools – Simple
UNIT V Fourier 1 temperat simple se TEXT BOO 1. C	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI transform – Power spectrum – Correlation – Windowing and t ture indicator – ON/OFF controller – PID controller – CRO emul- econd order system – Generation of HTML page	9 filtering tools – Simple ation – Simulation of a TOTAL: 45 PERIODS
UNIT V Fourier to temperatorial simple se TEXT BOO 1. Control	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI transform – Power spectrum – Correlation – Windowing and to ture indicator – ON/OFF controller – PID controller – CRO emul- econd order system – Generation of HTML page OKS: Gupta, S. and Gupta, J.P., 'PC Interfacing for Data Acquisition	9 filtering tools – Simple ation – Simulation of a TOTAL: 45 PERIODS and Process Control'
UNIT V Fourier 1 temperat simple se TEXT BOO 1. C In 2. P	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI transform – Power spectrum – Correlation – Windowing and the ture indicator – ON/OFF controller – PID controller – CRO emul- econd order system – Generation of HTML page OKS: Gupta, S. and Gupta, J.P., 'PC Interfacing for Data Acquisition instrument society of America, 1994.	9 filtering tools – Simple ation – Simulation of a TOTAL: 45 PERIODS and Process Control'
UNIT V Fourier 1 temperat simple se TEXT BOO 1. C II 2. P REFEREN 1. K	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI transform – Power spectrum – Correlation – Windowing and the ture indicator – ON/OFF controller – PID controller – CRO emul- econd order system – Generation of HTML page OKS: Gupta, S. and Gupta, J.P., 'PC Interfacing for Data Acquisition nstrument society of America, 1994. Peter W. Gofton, 'Understanding Serial Communications', Sybex Inter-	9 filtering tools – Simple ation – Simulation of a TOTAL: 45 PERIODS and Process Control' rnational, 1994.
UNIT V Fourier to temperate simple se TEXT BOO 1. G 1. G 1. G 1. G 1. K REFEREN	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI transform – Power spectrum – Correlation – Windowing and to ture indicator – ON/OFF controller – PID controller – CRO emul- econd order system – Generation of HTML page OKS: Gupta, S. and Gupta, J.P., 'PC Interfacing for Data Acquisition nstrument society of America, 1994. Peter W. Gofton, 'Understanding Serial Communications', Sybex Inte ICE BOOKS: Gevin James, 'PC Interfacing and Data Acquisition: Techniqu	9 filtering tools – Simple ation – Simulation of a TOTAL: 45 PERIODS and Process Control' rnational, 1994.
UNIT V Fourier to temperate simple set TEXT BOO 1. C 1. C 1. C 1. K 1. K 1. K 1. K 3. C	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI transform – Power spectrum – Correlation – Windowing and the ture indicator – ON/OFF controller – PID controller – CRO emul- econd order system – Generation of HTML page OKS: Gupta, S. and Gupta, J.P., 'PC Interfacing for Data Acquisition nstrument society of America, 1994. Peter W. Gofton, 'Understanding Serial Communications', Sybex Inter ICE BOOKS: Kevin James, 'PC Interfacing and Data Acquisition: Technique nstrumentation and Control', Newnes, 2000.	9 filtering tools – Simple ation – Simulation of a TOTAL: 45 PERIODS and Process Control' rnational, 1994.

C	COUR	SE CODE	:			COU	RSE TIT	TLE:			L	Т	Ρ	C
	102	12EE144			DIG	ITAL CC	ONTROI	L SYSTE	MS		3	0	0	3
COURS	E CA	TEGORY:	Progra	mme E	lective									
REAN	IBLE:	This cou	rse will	supple	ement	the Cor	ntrol Sy	stem c	ourse i	n Progr	am Co	re by ir	ntroduc	ing th
		digital co		•	-		•				ain, for	mulatin	ig state	mode
		time syst		-	-	-		t optim	al cont	rol.				
		ITE COUF				ystems								
OURS	E ED	UCATION	IAL OBJ	ECTIVE	S:									
he obj	jectiv	es of the	course	are to	,									
•	Intr	oduce ab	out dig	ital con	trol sys	stem								
٠	Des	ign comp	ensato	rs in dis	screte d	domain								
•	Exte	end the k	nowled	ge of st	tate spa	ace to c	discrete	e time s	ystem					
٠	Prov	vide the b	basics o	f Optin	nal con ⁻	trol and	d Lyapu	nov sta	bility					
OURS	E OU	TCOMES	:											
Up	on th	e succes	sful con	npletio	n of the	e cours	e, stude	ents wil	l be ab	le to:				
~~ .						. .							dge Lev	
CON	NO			(Lourse	Outco	me					•	d Bloor nomy)	ns
		Explain	the m	nethod	conve	ersion	of con	tinuous	s time	to				
CO	1	discrete										К2	2	
		Apply th	ne knov	vledge	of Z-tra	ansform	ns in ha	andling	differe	nce				
CO	2			-	ledge of Z-transforms in handling difference btaining the pulse transfer functions							K3	8	
	_	Design	compe	ensators	s via	time a	and fr	equenc	y dom	nain				
CO3	3	method	S									K4		
		Develop	state	mode	l and	check	for co	ontrolla	bility	and				
CO4	4	observa			ete tim	e syste	m perf	form a	design	via		K3	5	
		pole pla												
CO	5	Apply t optimal							and ab	out		K3	5	
ORRF	LATIO	ON OF CO)s WITH	I POs A		Os								
COs	PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
	- -											-		
CO1	н	н	N/L									N/1	н	1
CO1 CO2	H H	H H	M M								L	M M	н н	L

CO3

CO4

CO5

Н

Н

Н

Н

Н

Н

Μ

Μ

Μ

Μ

Μ

Μ

Μ

Μ

н

Н

Н

Μ

Μ

Μ

Μ

Μ

Μ

UNIT I	INTRODUCTION	9
Need for digit Quantizing Reconstructio		
UNIT II	PULSE TRANSFER FUNCTIONS	9
	-Inverse Z Transform- Difference Equation-Mapping s-Plan lse Transfer Function of Closed Loop System- Stability- J n	
UNIT III	DESIGN OF SAMPLED DATA SYSTEM	9
	ethod – Controller Design using root locus-Nyquist Stability Compensator design in frequency domain- Design of Sys es	_
UNIT IV	STATE SPACE MODEL FOR DISCRETE TIME SYSTEMS	9
	State Variable Representation-Conversion from state model	
	n of state difference equation- Concepts of Controllability a nt- State Observers	and Observability- Design Via
		and Observability- Design Via
Pole Placeme UNIT V Stability Defi	nt- State Observers	9
Pole Placeme UNIT V Stability Defi	nt- State Observers LYAPUNOV STABILITY AND OPTIMAL CONTROL nition-Lyapunov Stability	9
Pole Placeme UNIT V Stability Defi	nt- State Observers LYAPUNOV STABILITY AND OPTIMAL CONTROL nition-Lyapunov Stability	9 for linear/nonlinear system-
Pole Placeme UNIT V Stability Defi Introduction f TEXT BOOKS: 1. Kauts	nt- State Observers LYAPUNOV STABILITY AND OPTIMAL CONTROL nition-Lyapunov Stability	9 for linear/nonlinear system TOTAL: 45 PERIODS
Pole Placeme UNIT V Stability Defi Introduction t TEXT BOOKS: 1. Kauts	hiko Ogata 'Discrete Time Control Systems', Pearson Educatio pal, 'Digital Control and State Variable Methods', TMH Publica	9 for linear/nonlinear system TOTAL: 45 PERIODS
Pole Placeme UNIT V Stability Defi Introduction f TEXT BOOKS: 1. Kauts 2. M.Go REFERENCE B	hiko Ogata 'Discrete Time Control Systems', Pearson Educatio pal, 'Digital Control and State Variable Methods', TMH Publica	9 for linear/nonlinear system TOTAL: 45 PERIODS on ,2 nd Edition 2015 ation, 2 nd Edition, 2014

10212EE145 INTRODUCTION TO NONLINEAR DYNAMICAL SYSTEMS 3 0 0		
STSTEIVIS 5 0 0	3	

PREAMBLE: The basic necessity of this course arises from the fact that most of the real-world systems are highly nonlinear and handling these needs some preliminary background of these systems and its behaviour. This course introduces Nonlinear Systems in a basic level starting from one dimensional flow and ending in two dimensional flows.

PREREQUISITE COURSES: Linear Control Systems

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Impart knowledge about nonlinear systems in general
- Provide adequate knowledge in Bifurcation methods in 1 and 2 D flows
- Introduce the concepts of Chaos

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos	Course Outcomes	Knowledge Level (Revised Bloom's Taxonomy)
CO1	Illustrate the importance of nonlinear Systems	К2
CO2	Explain various bifurcations methods for 1D systems	К2
CO3	Explain various bifurcations methods for 2D systems	К2
CO4	Describe the existence of limit cycles and its implications	К2
CO5	Explain about chaotic Systems	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L											Н	
CO2	Н	М	L								L	L	Н	
CO3	Н	М	L								L	L	Н	
CO4	Н	М	L								L	М	Н	
CO5	Н	М	L								L	М	Н	

COURSE	CONTENT:	
UNIT I	INTRODUCTION AND ONE-DIMENSIONAL FLOW	9
	ion to Dynamics – Importance of Nonlinear Systems-1D S Linear stability Analysis- Existence and Uniqueness- Potentials	
UNIT II	BIFURCATIONS IN 1 D SYSTEMS AND FLOWS ON CIRCLE	9
Saddle No	ode – Transcritical – Pitch Fork –Uniform/Non uniform Oscillat	or-examples
UNIT III	2 D FLOWS	9
•	stems: Introduction – Example- Classification; Phase Plane: Int and uniqueness-Linearization-Conservative System- Reversibl	•
UNIT IV	LIMIT CYCLES AND BIFURCATION IN 2D	9
and Wea	ion- Existence of Limit Cycle- Poincare Bendixson Theorem-L kly Nonlinear Oscillator; Bifurcations: Saddle. Trans-critical, Pi - Poincare Maps	-
UNIT V	INTRODUCTION TO CHAOS	9
	uation- Properties of Lorenz Equation-Chaos on Strange attrac nal Maps – Fixed Points and Cobweb – logistic map- Liapunov	-
		TOTAL: 45 PERIODS
TEXT BOO	DKS:	
	tephen Wiggins, 'Introduction to Applied Nonlinear Dynamic dition, Springer 2010	al Systems and Chaos', 2 nd
	teven H Strogatz, 'Nonlinear Dynamics and Chaos with applic hemistry and Engineering', Indian Edition by Levant Books, 200	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

	OURSE C						SE TITL				L	Т	Р	С
1	10212EE	146		DIS	CRETE	TIME S	IGNAL	PROCE	SSING		3	0	0	3
OURS	E CATEO	GORY:	Progra	mme E	lective									
netho	IBLE: Dig ds and t es stude sing.	o acq	uire kn	owledg	e of a	nalysis	of syste	ems us	ing var	ious tra	ansform	nation	technic	ques. I
PREREC	QUISITE	COUR	SES: Tr	ansfor	ms and	Partial	Differe	ential E	quatio	ns.				
RELATE		RSES: [Digital (Control	Syster	n.								
COURS	E EDUC	ATION	AL OB	ECTIVE	S:									
The ob	jectives	of the	course	are to	,									
•	Learn o	discret	e Fouri	er tran	sform	and its	proper	ties.						
•	Study t	he cha	aracter	istics o	f IIR to	design	the IIR	filter.						
•	Design	FIR Fi	lter to f	filter th	e unde	sired si	ignals.							
•	Unders	stand I	inite w	ord ler	ngth ef	fects &	DSP Pr	ocesso	r.					
٠	Study t	he co	ncept o	f Multi	rate Si	gnal pro	ocessin	g & its a	applica	tions.				
COURS	E OUTC	OMES	:											
Up	on the s	uccess	sful con	npletio	n of th	e cours	e, stud	ents wi	ll be at	ole to:				
CO Nos.				С	ourse	Outcon	nes					•	.evel (B d Bloon omy)	
C01		•	crete Fo signals.		ransfo	rm & F	ast Fou	urier Tra	ansform	n for				
	Dov		0									K	5	
CO2		•	-	tal Infir	nite Im	pulse R	espons	se Filter	rs (IIR)	from		K		
CO2 CO3	give Deve	n spec elop ti	he Digit cificatio	tal Infir ns al Infin			•	se Filter e Filters					3	
	give Deve give App	n spec elop tł n spec ly the	he Digit cificatio ne Digit cificatio basic	tal Infir ns al Infin ns signal	ite Imp proces	oulse Re	esponse	e Filters	s (FIR) f	rom		K	3	
CO3	give Deve give App and Expl	n spec elop tl n spec ly the solve	he Digit cificatio ne Digit cificatio basic the fini e basic	tal Infir ns al Infin ns signal te wore	ite Imp proces d lengt	oulse Re sing co h effect	esponse oncepts ts on fil	e Filters	s (FIR) f P Proce	rom essor		ĸ	3 3 3	
CO3 CO4 CO5	give Deve give App and Expl	n spec elop th n spec ly the solve ain the lication	he Digit ificatio ne Digit ificatio basic basic the fini e basic ns.	tal Infir ns al Infin ns signal te word s of Mu	ite Imp proces d lengt ıltirate	oulse Re sing co h effect Signal	esponse oncepts ts on fil	e Filters in DSI Iters.	s (FIR) f P Proce	rom essor		K K	3 3 3	
CO3 CO4 CO5	give Deve give App and Expl appl	n spec elop th n spec ly the solve ain the lication	he Digit ificatio ne Digit ificatio basic basic the fini e basic ns.	tal Infir ns al Infin ns signal te word s of Mu	ite Imp proces d lengt ıltirate	oulse Re sing co h effect Signal	esponse oncepts ts on fil	e Filters in DSI Iters.	s (FIR) f P Proce	rom essor & its	P011	K K K	3 3 2	PSO2

CO2

CO3

CO4

CO5

Н

Н

Н

Н

Н

Н

Н

Н

Μ

Μ

Μ

Μ

Μ

Μ

L

L

Н

н

L

L

Н

Н

Н

Н

	UNIT I	DISCRETE FOURIER TRANSFORMS	9
algorit		 Linear & Circular Convolution Method Decimation in Frequency algorithms – 	-
	UNIT II	IIR FILTER DESIGN	9
using I	mpulse Invariance, Bilinea	lesign – Discrete time IIR filter from an r transformation - IIR Filter structures - using frequency translation.	
	UNIT III	FIR FILTER DESIGN	9
		e FIR filter - Filter design using windo ning Window) - Frequency sampling teo	
	UNIT IV	FINITE WORDLENGTH EFFECTS & DSP PROCESSOR	9
coeffic scaling	ient quantization error – . Introduction to DSP arch	antization- Truncation and Rounding Product quantization error - Overflow itecture – Harvard architecture - Dedica pelining - Overview of instruction set of	error – limit cycle oscillation ated MAC unit - Multiple ALUs
	UNIT V	MULTIRATE SIGNAL PROCESSING	9
		& APPLICATIONS	
Applic		APPLICATIONS nation, Interpolation - Sampling rate con lusical Sound Processing - Digital Audio	-
Applic	ation - Sub band coding - N	nation, Interpolation - Sampling rate co	-
Applic Oversa	ation - Sub band coding - N	nation, Interpolation - Sampling rate co	sampling rate conversion -
Applica Oversa TEXT E	ation - Sub band coding - M ampling A/D &D/A. BOOKS: John G. Proakis & Dimitr	nation, Interpolation - Sampling rate co	sampling rate conversion - TOTAL: 45 PERIOD ng – Principles, Algorithms
Applica Oversa TEXT E 1.	ation - Sub band coding - Mampling A/D &D/A. BOOKS: John G. Proakis & Dimitr Applications', 4 th Edition, B. Venkataramani, M. E	nation, Interpolation - Sampling rate co Iusical Sound Processing - Digital Audio ris G.Manolakis, 'Digital Signal Processi	sampling rate conversion - TOTAL: 45 PERIOD ng – Principles, Algorithms
Applic. Oversa TEXT E 1. 2.	ation - Sub band coding - Mampling A/D &D/A. BOOKS: John G. Proakis & Dimitr Applications', 4 th Edition, B. Venkataramani, M. E	nation, Interpolation - Sampling rate co Iusical Sound Processing - Digital Audio is G.Manolakis, 'Digital Signal Processi Pearson Education / Prentice Hall, 2007 Bhaskar, 'Digital Signal Processors: Ar	sampling rate conversion - TOTAL: 45 PERIOD ng – Principles, Algorithms
Applic. Oversa TEXT E 1. 2.	ation - Sub band coding - Mampling A/D &D/A. BOOKS: John G. Proakis & Dimitr Applications', 4 th Edition, B. Venkataramani, M. E Applications', 2 nd Edition, ENCE BOOKS:	nation, Interpolation - Sampling rate co Iusical Sound Processing - Digital Audio is G.Manolakis, 'Digital Signal Processi Pearson Education / Prentice Hall, 2007 Bhaskar, 'Digital Signal Processors: Ar	sampling rate conversion - TOTAL: 45 PERIOD ng – Principles, Algorithms '. rchitecture, Programming an
Applic. Oversa TEXT E 1. 2. REFER 1.	ation - Sub band coding - Mampling A/D &D/A. BOOKS: John G. Proakis & Dimitr Applications', 4 th Edition, B. Venkataramani, M. E Applications', 2 nd Edition, ENCE BOOKS: S.Salivahanan, A.Vallava Publication, 2002.	nation, Interpolation - Sampling rate con Iusical Sound Processing - Digital Audio ris G.Manolakis, 'Digital Signal Processin Pearson Education / Prentice Hall, 2007 Bhaskar, 'Digital Signal Processors: Ar Tata McGraw-Hill Education, 2002. Iraj, C Gnanapriya, 'Discrete Signal Pro & Barrie.W.Jervis, 'Digital Signal Pro	sampling rate conversion - TOTAL: 45 PERIOD ng – Principles, Algorithms rchitecture, Programming an Processing', Tata McGraw H
Applic. Oversa TEXT E 1. 2. REFER 1. 2.	ation - Sub band coding - Mampling A/D &D/A. BOOKS: John G. Proakis & Dimitr Applications', 4 th Edition, B. Venkataramani, M. E Applications', 2 nd Edition, ENCE BOOKS: S.Salivahanan, A.Vallava Publication, 2002. Emmanuel C. Ifeachor, Education / Prentice Hall,	nation, Interpolation - Sampling rate con Iusical Sound Processing - Digital Audio ris G.Manolakis, 'Digital Signal Processin Pearson Education / Prentice Hall, 2007 Bhaskar, 'Digital Signal Processors: Ar Tata McGraw-Hill Education, 2002. Iraj, C Gnanapriya, 'Discrete Signal Pro & Barrie.W.Jervis, 'Digital Signal Pro	sampling rate conversion - TOTAL: 45 PERIOD ng – Principles, Algorithms '. rchitecture, Programming ar Processing', Tata McGraw H cessing', 2 nd Edition, Pearso
Applic. Oversa TEXT E 1. 2. REFER 1. 2. 3.	ation - Sub band coding - Mampling A/D &D/A. BOOKS: John G. Proakis & Dimitr Applications', 4 th Edition, B. Venkataramani, M. E Applications', 2 nd Edition, ENCE BOOKS: S.Salivahanan, A.Vallava Publication, 2002. Emmanuel C. Ifeachor, Education / Prentice Hall, Sanjit K. Mitra, 'Digital S 2007.	nation, Interpolation - Sampling rate con Iusical Sound Processing - Digital Audio Tis G.Manolakis, 'Digital Signal Processin Pearson Education / Prentice Hall, 2007 Bhaskar, 'Digital Signal Processors: Ar Tata McGraw-Hill Education, 2002. Irraj, C Gnanapriya, 'Discrete Signal P & Barrie.W.Jervis, 'Digital Signal Pro 2002.	sampling rate conversion - TOTAL: 45 PERIOE ng – Principles, Algorithms rchitecture, Programming ar Processing', Tata McGraw H cessing', 2 nd Edition, Pearso Approach', Tata McGraw Hi

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10212EE147	SIGNALS AND SYSTEMS	3	0	0	3

PREAMBLE: This course becomes the basis of introducing the students to the concept of signals, systems and its types, also the method of handling the signals by various mathematical tools. This course is designed pedagogically and uncovers the concepts of continuous and discrete time signals and the systems.

PREREQUISITE COURSES: Linear Control System, Engineering Mathematics

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Introduce signals (Continuous and discrete), systems (Continuous and discrete), its types and operation on signals
- Provide an intuitive understanding of the application of Fourier Series, Fourier Transforms (Including DFT) and Z-transforms
- Show the applications of these mathematical tools in networks

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Classify the various types of signal and systems and operate on the signals (like shifting, scaling etc).	К2
CO2	Apply Fourier series and Fourier transforms in the analysis of signals.	КЗ
CO3	Identify the significance of Laplace Transforms and apply the same to some basic circuits.	К3
CO4	Explain the concept of sampling.	К2
CO5	Apply the Z-Transforms technique to DT signal.	К3

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	L								L	М	Н	L
CO2	Н	М	М	L							L	М	Н	L
CO3	Н	М	М	L							L	М	Н	L
CO4	Н	М	L								L	М	Н	L
CO5	Н	М	М								L	М	Н	L

COURSE	CONTENT:	
UNIT I	CLASSIFICATION OF SIGNALS AND SYSTEMS	9
sampling	tion to Continuous and Discrete Time Signals- Continuous to D c-Classifications of Continuous and Discrete time signal-Introduct Time systems and its Classification- LTI System- Impulse response	
UNIT II	FOURIER SERIES ANALYSIS	9
	tion to Fourier Series-Trigonometric Coefficients- Evaluation of y Conditions – Discrete time Fourier Series-Application of Fourier Se	
UNIT III	FOURIER TRANSFORMS	9
•	ntation of a periodic signals- Continuous time Fourier Transform ms-Discrete Time Fourier Transforms - Properties of DTFT-Dual m Pairs	-
UNIT IV	LAPLACE TRANSFORMS	9
	o Laplace and Motivation-Region of Convergence - Properties of Lap Transforms- Application to Circuits	lace Transforms-Inverse
UNIT V	Z- TRANSFORMS	9
	tion-Region of Convergence- Relation Between s and z Plane- Z-trans sforms to Discrete time systems-	sform Pairs- Application
		TOTAL: 45 PERIODS
TEXT BO	OKS:	
1.	B. P. Lathi, 'Principles of Linear Systems and Signals', 2 nd Edition, Oxfo	ord, 2009.
2. /	Allan V.Oppenheim, S.Wilsky and S.H.Nawab, 'Signals and Systems', I	Pearson, 2007.
REFEREN	ICE BOOKS:	
	R.E.Zeimer, W.H.Tranter and R.D.Fannin, 'Signals & Systems - Co Pearson, 2007.	ntinuous and Discrete',
2.	ohn Alan Stuller, 'An Introduction to Signals and Systems', Thomson	, 2007.
	И.J.Roberts, 'Signals & Systems Analysis using Transform Meth ИсGraw Hill, 2007.	nods & MATLAB', Tata

COUR	SE CODE:	COURSE TITLE:		L	Т	Р	C
1021	L2EE148	SOFT COMPUTING		3	0	0	3
COURSE	CATEGORY: Pro	gramme Elective					•
		becomes the basis of introducing the students			•		•
echnique	es like neural ne	etwork, fuzzy logic, genetic algorithm and hybrid	l soft com	iputi	ing tec	hnique	es.
PREREQU	ISITE COURSES	: Nil					
	DUCATIONAL	OBJECTIVES:					
The chies	tives of the cou						
i ne obiec	τινές οτ της ζοι						
-		but the basics of soft computing techniques li	ike neura	al ne	etwork	, fuzzy	logic
• U	nderstand abo					, fuzzy	logic
• U	nderstand abo	out the basics of soft computing techniques li				, fuzzy	o logic
• U	nderstand abo	out the basics of soft computing techniques li				, fuzzy	logic
• U ge	nderstand abo enetic algorithr DUTCOMES:	out the basics of soft computing techniques li				, fuzzy	' logic
• U gr COURSE (Upon the	nderstand abo enetic algorithr DUTCOMES:	out the basics of soft computing techniques line of and hybrid soft computing techniques with its	applicatio	ons.		, fuzzy	
• U gr COURSE (Upon the CO	nderstand abo enetic algorithr DUTCOMES:	out the basics of soft computing techniques line of and hybrid soft computing techniques with its	applicatio	ons.	edge Lo		ased
• U gr COURSE (Upon the	nderstand abo enetic algorithr DUTCOMES:	but the basics of soft computing techniques linn and hybrid soft computing techniques with its appletion of the course, students will be able to:	applicatio	ons. owle	edge Lo	evel (B Bloom	ased
• U gr COURSE (Upon the CO	nderstand abo enetic algorithr DUTCOMES: successful com	but the basics of soft computing techniques line and hybrid soft computing techniques with its appletion of the course, students will be able to:	applicatio	ons. owle	edge Lo evised	evel (B Bloom omy)	ased
• U gr COURSE (Upon the CO Nos.	nderstand abo enetic algorithr DUTCOMES: successful com Explain the b	out the basics of soft computing techniques line and hybrid soft computing techniques with its appletion of the course, students will be able to: Course Outcomes	applicatio	ons. owle	edge Lo evised Faxono	evel (B Bloom omy)	ased
Ugr Ugr COURSE (Upon the CO Nos. CO1	nderstand abo enetic algorithr DUTCOMES: successful com Explain the b Describe the	out the basics of soft computing techniques line on and hybrid soft computing techniques with its opletion of the course, students will be able to: Course Outcomes	applicatio	ons. owle	edge Lo evised Faxono K2	evel (B Bloom omy)	ased
U gr COURSE C Upon the CO Nos. CO1 CO2	nderstand abo enetic algorithr DUTCOMES: successful com Explain the b Describe the Explain abou	out the basics of soft computing techniques li m and hybrid soft computing techniques with its apletion of the course, students will be able to: Course Outcomes pasics of soft computing techniques neural network concepts	applicatio	ons. owle	edge Lo evised Faxono K2 K2	evel (B Bloom omy)	ased

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	L								L	М	Н	L
CO2	Н	М	Μ								L	М	Н	L
CO3	Н	М	М								L	М	Н	L
CO4	Н	М	М								L	М	Н	L
CO5	Н	М	М								L	М	Н	L

COURSE CONTENT:

UNIT I INTRODUCTION

Artificial neural network: Introduction, characteristics- learning methods – taxonomy – Evolution of neural networks- basic models – important technologies – applications. Fuzzy logic: Introduction – crisp sets- fuzzy sets – crisp relations and fuzzy relations: cartesian product of relation – classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic algorithm-Introduction – biological background – traditional optimization and search techniques – Genetic basic concepts.

9

UNITI	II NEURAL NETWORKS	9
networ nemor Hopfiel	och-Pitts neuron – linear separability – Hebb network – supervised learks – adaptive linear neuron, multiple adaptive linear neurons, BPN ry network: auto-associative memory network, hetero-associative ld networks, iterative auto associative memory network & iterative as spervised learning networks: Kohonen self-organizing feature maps, rk.	N, RBF, TDNN- associativ memory network, BAN sociative memory networ
UNIT I	III FUZZY LOGIC	9
Defuzzi extensi approxi rules, a	ership functions: features, fuzzification, methods of membership ification: lambda cuts – methods – fuzzy arithmetic and fuzzy mea ion principle – fuzzy measures – measures of fuzziness -fuzzy integr imate reasoning : truth values and tables, fuzzy propositions, formation aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems i-fuzzy decision making.	asures: fuzzy arithmetic rals – fuzzy rule base an n of rules-decomposition c
	V GENETIC ALGORITHM	9
Genetia	c algorithm and search space – general genetic algorithm – operato	ors – Generational cycle
stoppin	ng condition – constraints – classification genetic programming – multil m- advances in GA.	
stoppin probler UNIT V	ng condition – constraints – classification genetic programming – multile m- advances in GA. V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS	evel optimization – real lif
stoppin probler UNIT V Neuro- hybrid with SA	ng condition – constraints – classification genetic programming – multil m- advances in GA.	evel optimization – real lif 9 y hybrid and fuzzy geneti ch of multispectral image
stoppin probler UNIT V Neuro- hybrid with SA based h	ng condition – constraints – classification genetic programming – multile m- advances in GA. V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS fuzzy hybrid systems – genetic neuro hybrid systems – genetic fuzzy systems – simplified fuzzy ARTMAP – Applications: A fusion approad AR, optimization of traveling salesman problem using genetic algorithm hybrid fuzzy controllers.	evel optimization – real lif 9 y hybrid and fuzzy genetic ch of multispectral image
stoppin probler UNIT V Neuro hybrid with SA based h TEXT B	ng condition – constraints – classification genetic programming – multile m- advances in GA. V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS fuzzy hybrid systems – genetic neuro hybrid systems – genetic fuzzy systems – simplified fuzzy ARTMAP – Applications: A fusion approac AR, optimization of traveling salesman problem using genetic algorithm hybrid fuzzy controllers. OOKS:	evel optimization – real lif 9 y hybrid and fuzzy genet ch of multispectral image approach, soft computing TOTAL: 45 PERIOD
stoppin probler UNIT V Neuro hybrid with SA based h TEXT B	ng condition – constraints – classification genetic programming – multile m- advances in GA. V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS fuzzy hybrid systems – genetic neuro hybrid systems – genetic fuzzy systems – simplified fuzzy ARTMAP – Applications: A fusion approad AR, optimization of traveling salesman problem using genetic algorithm hybrid fuzzy controllers.	evel optimization – real lif 9 y hybrid and fuzzy genet ch of multispectral image approach, soft computing TOTAL: 45 PERIOD
stoppin probler UNIT Neuro hybrid with SA based h tEXT Bo 1.	ng condition – constraints – classification genetic programming – multile m- advances in GA. V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS fuzzy hybrid systems – genetic neuro hybrid systems – genetic fuzzy systems – simplified fuzzy ARTMAP – Applications: A fusion approad AR, optimization of traveling salesman problem using genetic algorithm hybrid fuzzy controllers. OOKS: J.S.R.Jang, C.T. Sun and E.Mizutani, 'Neuro-Fuzzy and Soft Computing 2004.	9 y hybrid and fuzzy genet ch of multispectral image approach, soft computing TOTAL: 45 PERIOD g', PHI / Pearson Educatio
stoppin probler UNIT Neuro hybrid with SA based h TEXT B 1. 2.	ng condition – constraints – classification genetic programming – multile m- advances in GA. V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS fuzzy hybrid systems – genetic neuro hybrid systems – genetic fuzzy systems – simplified fuzzy ARTMAP – Applications: A fusion approad AR, optimization of traveling salesman problem using genetic algorithm hybrid fuzzy controllers. OOKS: J.S.R.Jang, C.T. Sun and E.Mizutani, 'Neuro-Fuzzy and Soft Computing 2004.	9 y hybrid and fuzzy genet ch of multispectral image approach, soft computing TOTAL: 45 PERIOD g', PHI / Pearson Educatio
stoppin probler UNIT Neuro hybrid with SA based h TEXT BC 1. 2. REFERE	ng condition – constraints – classification genetic programming – multile m- advances in GA. V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS fuzzy hybrid systems – genetic neuro hybrid systems – genetic fuzzy systems – simplified fuzzy ARTMAP – Applications: A fusion approad AR, optimization of traveling salesman problem using genetic algorithm hybrid fuzzy controllers. OOKS: J.S.R.Jang, C.T. Sun and E.Mizutani, 'Neuro-Fuzzy and Soft Computing 2004. S.N.Sivanandam and S.N.Deepa, 'Principles of Soft Computing', Wiley	9 y hybrid and fuzzy genet ch of multispectral image approach, soft computing TOTAL: 45 PERIOD g', PHI / Pearson Educatio India Pvt Ltd, 2011.
stoppin probler UNIT V Neuro hybrid with SA based h TEXT Bo 1. 2. REFERE 1.	ng condition – constraints – classification genetic programming – multile m- advances in GA. W HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS fuzzy hybrid systems – genetic neuro hybrid systems – genetic fuzzy systems – simplified fuzzy ARTMAP – Applications: A fusion approad AR, optimization of traveling salesman problem using genetic algorithm hybrid fuzzy controllers. OOKS: J.S.R.Jang, C.T. Sun and E.Mizutani, 'Neuro-Fuzzy and Soft Computing 2004. S.N.Sivanandam and S.N.Deepa, 'Principles of Soft Computing', Wiley ENCE BOOKS: S.Rajasekaran and G.A.Vijayalakshmi Pai, 'Neural Networks, Fuzzy Lo	9 y hybrid and fuzzy genet ch of multispectral image approach, soft computing TOTAL: 45 PERIOD g', PHI / Pearson Educatio India Pvt Ltd, 2011. gic and Genetic Algorithm
stoppin probler UNIT V Neuro- hybrid with SA based h TEXT BO 1. 2. REFERE 1.	ng condition – constraints – classification genetic programming – multile m- advances in GA. W HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS fuzzy hybrid systems – genetic neuro hybrid systems – genetic fuzzy systems – simplified fuzzy ARTMAP – Applications: A fusion approad AR, optimization of traveling salesman problem using genetic algorithm hybrid fuzzy controllers. OOKS: J.S.R.Jang, C.T. Sun and E.Mizutani, 'Neuro-Fuzzy and Soft Computing 2004. S.N.Sivanandam and S.N.Deepa, 'Principles of Soft Computing', Wiley ENCE BOOKS: S.Rajasekaran and G.A.Vijayalakshmi Pai, 'Neural Networks, Fuzzy Lo Synthesis & Applications', Prentice-Hall of India Pvt. Ltd., 2006. George J. Klir, Ute St. Clair, Bo Yuan, 'Fuzzy Set Theory: Foundations Hall, 1997.	9 y hybrid and fuzzy genetic ch of multispectral image approach, soft computing TOTAL: 45 PERIOD g', PHI / Pearson Educatio India Pvt Ltd, 2011. gic and Genetic Algorithm and Applications' Prentic
stoppin probler UNIT V Neuro- hybrid with SA based h TEXT BO 1. 2. REFERE 1. 2.	ng condition – constraints – classification genetic programming – multile m- advances in GA. V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS fuzzy hybrid systems – genetic neuro hybrid systems – genetic fuzzy systems – simplified fuzzy ARTMAP – Applications: A fusion approad AR, optimization of traveling salesman problem using genetic algorithm hybrid fuzzy controllers. OOKS: J.S.R.Jang, C.T. Sun and E.Mizutani, 'Neuro-Fuzzy and Soft Computing 2004. S.N.Sivanandam and S.N.Deepa, 'Principles of Soft Computing', Wiley ENCE BOOKS: S.Rajasekaran and G.A.Vijayalakshmi Pai, 'Neural Networks, Fuzzy Lo Synthesis & Applications', Prentice-Hall of India Pvt. Ltd., 2006. George J. Klir, Ute St. Clair, Bo Yuan, 'Fuzzy Set Theory: Foundations Hall, 1997. David E. Goldberg, 'Genetic Algorithm in Search Optimization and M Education India, 2013.	9 y hybrid and fuzzy genet ch of multispectral image approach, soft computing TOTAL: 45 PERIOD g', PHI / Pearson Educatio India Pvt Ltd, 2011. gic and Genetic Algorithm and Applications' Prentic Machine Learning' Pearso

		CODE:					RSE TIT				L	Т	Р	C
10	212EE	149		В		DICALI	NSTRU	MENT	ATION		3	0	0	3
REAM hysiolo mporta htrodu REREC	BLE: ogical ance. ced. QUISIT E EDU ective Provi respi Intro Provi Provi	EGORY: The cou system The fun The fun E COUR CATION es of the de an ad ration. duce the de the l de lates	ITSE is is of th idamer IAL OB. course cquaint e meth atest ic it know	design ne hun atal prin asic Ele IECTIVI e are to cance o ods of leas on ledge o	ed to nan bo nciples ctronic ES: , f the p differe device of Pulm	make ody and of equ cs and I hysiolo nt tran es of no nonary	d relat ipment Measur gy of th sducer: on-elec Measu	e then t that a rement he heat s used. trical d rement	Engine Engine rt, lung evices. t & Bio	ne para ually in eering , blood	ameter use at	the pr	have esent c	clinica lay ar
		COMES	•						5.1.5	liniqui				
Upo	on the	succes	sful cor	npletio	n of th	e cours	se, stuc	lents w	vill be a	ble to:				
CO Nos.	,			с	ourse	Outcor	nes					-	.evel (B d Bloon omy)	
CO1	. E	xplain a	bout th	ie fund	ament	als of b	iomed	ical eng	gineerii	ng		K	2	
CO2	,	xplain neasurei	about ment d		basic	s of	vario	us se	nsing	and		K	2	
CO3	s II	lustrate	the lat	est ide	as on d	levices	of non	-electri	ical dev	/ices		K	2	
CO4		pply the		t know	ledge	of Puli	monary	/ Meas	ureme	nt &		K	3	
CO5		escribe nd biom			odern ı	metho	ds of ir	naging	techni	ques		K	2	
CORREI	ATIO	N OF CC	Ds WITI	H POs A	AND PS	SOs								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
CO1	Н	L										L	М	
CO2	Н	L										L	М	
		1	1								1			
CO3	Н	L	L								L	L	Μ	L

L

н

L

CO5

L

L

М

L

UNIT I	FUNDAMENTALS OF BIOMEDICAL ENGINEERING	9
Cell and biomedic mechanic	its structure – Resting and Action Potential – Nervous system – al system- Cardiovascular systems- Respiratory systems - Biomecha cs of spinal column and limbs- Transducers – selection criteria – ers - Temperature measurements - Fibre optic temperature sensors.	Basic components of a nics of soft tissues - Basic Piezo electric, ultrasonic
UNIT II	BIOMEDICAL MEASUREMENT	9
	es –types-Amplifiers - ECG – EEG – EMG – ERG - Electrical safety azards – leakage current-Instruments for checking safety pa nts.	
UNIT III	NON-ELECTRICAL PARAMETERS MEASUREMENT AND DIAGNOSTIC PROCEDURES	9
measure	ment of blood pressure - Cardiac output - Heart rate - Heart sou ments – spirometer – Photo Plethysmography, Body Plethysmograp od –measurement of blood pCO2, pO2, finger-tip oxymeter - ESR, G	hy – Blood Gas analysers,
UNIT IV	PULMONARY MEASUREMENT AND BIO TELEMETRY	9
	etry – Telemetering multiple information – implanted transmitte and safety techniques.	ers – causes of electrica
UNIT V	MEDICAL IMAGING SYSTEM	9
Ultrasour	MEDICAL IMAGING SYSTEM nd scanner – Echo cardiography – Coloar Doppler system – CAT and ogram – LASER Imaging – Endoscope.	
Ultrasour	nd scanner – Echo cardiography – Coloar Doppler system – CAT and	CT scan – MRI Imaging –
Ultrasour	nd scanner – Echo cardiography – Coloar Doppler system – CAT and ogram – LASER Imaging – Endoscope.	CT scan – MRI Imaging –
Ultrasour Cine angi TEXT BO 1. L	nd scanner – Echo cardiography – Coloar Doppler system – CAT and ogram – LASER Imaging – Endoscope.	CT scan – MRI Imaging – TOTAL: 45 PERIODS
Ultrasour Cine angi TEXT BOO 1. L 2. J	nd scanner – Echo cardiography – Coloar Doppler system – CAT and ogram – LASER Imaging – Endoscope. DKS: eslie Cromwell, 'Biomedical Instrumentation and Measurement', Pi	CT scan – MRI Imaging – TOTAL: 45 PERIODS rentice Hall of India, New
Ultrasour Cine angi TEXT BOO 1. L 2. Jo V	nd scanner – Echo cardiography – Coloar Doppler system – CAT and ogram – LASER Imaging – Endoscope. DKS: eslie Cromwell, 'Biomedical Instrumentation and Measurement', Pr Delhi, 2007. oseph J.Carr and John M. Brown, 'Introduction to Biomedical Equi	CT scan – MRI Imaging – TOTAL: 45 PERIODS rentice Hall of India, New
Ultrasour Cine angi TEXT BOO 1. L 2. J V REFEREN	nd scanner – Echo cardiography – Coloar Doppler system – CAT and ogram – LASER Imaging – Endoscope. DKS: eslie Cromwell, 'Biomedical Instrumentation and Measurement', Pr Delhi, 2007. Deseph J.Carr and John M. Brown, 'Introduction to Biomedical Equi Vileyand sons, New York, 4 th Edition, 2012.	CT scan – MRI Imaging – TOTAL: 45 PERIODS rentice Hall of India, New pment Technology', John
Ultrasour Cine angi TEXT BOO 1. L 2. J V REFEREN 1. J N 2. K	nd scanner – Echo cardiography – Coloar Doppler system – CAT and ogram – LASER Imaging – Endoscope. DKS: eslie Cromwell, 'Biomedical Instrumentation and Measurement', Pr Delhi, 2007. Deseph J.Carr and John M. Brown, 'Introduction to Biomedical Equi Vileyand sons, New York, 4 th Edition, 2012. CE BOOKS: Dohn G. Webster, 'Medical Instrumentation Application and Design	CT scan – MRI Imaging – TOTAL: 45 PERIODS rentice Hall of India, New pment Technology', John n', John Wiley and Sons,
Ultrasour Cine angi TEXT BOO 1. L 2. Jo V REFEREN 1. Jo N 2. K	nd scanner – Echo cardiography – Coloar Doppler system – CAT and ogram – LASER Imaging – Endoscope. DKS: eslie Cromwell, 'Biomedical Instrumentation and Measurement', Pr Delhi, 2007. Deseph J.Carr and John M. Brown, 'Introduction to Biomedical Equi Vileyand sons, New York, 4 th Edition, 2012. CE BOOKS: Dohn G. Webster, 'Medical Instrumentation Application and Design lew York, 1998.	CT scan – MRI Imaging – TOTAL: 45 PERIODS rentice Hall of India, New pment Technology', Johr n', John Wiley and Sons, Graw-Hill, New Delhi, 2 ^{nc}
Ultrasour Cine angi TEXT BOO 1. L 2. Jo V REFEREN 1. Jo N 2. K E 3. C 4. E	nd scanner – Echo cardiography – Coloar Doppler system – CAT and ogram – LASER Imaging – Endoscope. DKS: eslie Cromwell, 'Biomedical Instrumentation and Measurement', Pro- belhi, 2007. oseph J.Carr and John M. Brown, 'Introduction to Biomedical Equi Vileyand sons, New York, 4 th Edition, 2012. CE BOOKS: ohn G. Webster, 'Medical Instrumentation Application and Design lew York, 1998. Schandpur R.S, 'Handbook of Biomedical Instrumentation', Tata Mcdi dition, 2003.	CT scan – MRI Imaging – TOTAL: 45 PERIODS rentice Hall of India, New pment Technology', John n', John Wiley and Sons, Graw-Hill, New Delhi, 2 ^{nc} on, 2007.

		E CODE:				COU	RSE TIT	LE:			L	Т	Р	C
	1021	2EE150			PR	OCESS	AUTO	ΜΑΤΙΟΙ	N		3	0	0	3
COURS	E CAT	FEGORY:	Progra	mme E	lective									
		This co		-		•			-					
		Program		-		ers & D	istribu	ted Cor	ntrol Sy	stems (deploye	ed in th	e vario	us cor
		nd resear	-		-	suite								
				-	-	Juits								
		JCATION												
The obj	ectiv	es of the	course	e are to	,									
٠		ize the v aging te	-	-	and no	eed of	timers,	counte	rs, vari	ous me	mories	and th	eir effi	cient
•		te the au			nniques	to rea	l world	engine	ering a	pplicat	ions.			
COURS	E OU	TCOMES	:											
Up	on th	e succes	sful cor	npletio	n of the	e cours	e, stud	ents wi	ll be ab	le to:				
со					Cour	se Out	comes						of learn (Based	-
Nos	•				Cour	se Out	comes						d Bloon	
CO	L	Illustrat	e the ba	asics of	PLCs								К2	
CO2	2	Design l	adder	Diagran	n by pr	ogramr	ning th	e timer	s and c	ounter	s.		КЗ	
COS	3	Design t	he PLC	s addre	ssing a	pplicati	ions an	d resea	rch pro	blems.			КЗ	
CO4	1	Exempli	fy the k	asics a	nd desi	gn of D	CS						КЗ	
COS	5	Integrat	ing vari	ious coi	mpone	nts to E	DCS to	execute	Auton	nation			К2	
						_								
CORRE	PO1	DN OF CO	Ds WITH	POS A	ND PS	Os PO6	PO7	PO8	PO9	PO10	PO11	DO1 2	PSO1	PSO2
CO3	H	L	M	РО4 М	P05	P00	P07	PUo	P09	P010	L	M	H	P302
CO1	н	Н	M	Н								L	н	
CO3	Н	L	L	М								L	н	L
CO4	Н	L	М	м							L	М	н	L
CO5	Н	М	L									L	Н	
			GRAMN			ΟΝΤΡ						(•	
		PLC's – (ver rela	ay logic	- PLC n	rogram			es
UNI			GRAMI						,	p	-0.41	-))	
		am – Pro					ters – r)esign c	of PLC					

UNIT III	APPLICATIONS OF PLC	9
	PLC – Program control instructions, math instructions, seque cation of PLC – Case study of bottle filling system	encer instructions – Use of PC
UNIT IV	DISTRIBUTED CONTROL SYSTEMS (DCS)	9
	hitecture (centralized, hybrid generalized DCS) Local Control J – Process interfacing issues, communication facilities, config	
UNIT V	INTERFACES IN DCS	9
•	rfaces - Low level and high-level operator interfaces – Operator interfaces – Operator interfaces – General purpo	
		TOTAL: 45 PERIODS
TEXT BOOKS:		
	Petruzella, 'Programmable Logic Controllers', 3 rd Editionations, 2010	on, by, Tata McGraw Hill
2. Georg	e Bolton, 'Programmable Logic Controllers', 5 th Edition, Elsevi	er India Publications, 2008
REFERENCE BO	DOKS:	
1. Webb	John W, Reis Ronald A, 'Programmable Logic Controllers', PH	I learning Pvt Ltd.,2007
	vorth, 'Programmable Logic Controllers: Programming Me n, Pearson India Publications.	thods and Applications', 1 st

CC	OURSE	CODE:					OURSE 1					L 1	ГР	C
1	0212E	E151			UTILIZ	ATION	OF ELE	CTRICA	L ENER	GY		3 (0 0	3
OURS	E CATE	GORY:	Progra	mme E	lective									
				•		-				ghting,	Tractic	on, Elec	trical h	eating
lectro	mecha	anical e	nergy c	onvers	ion and	lvariou	is elect	rical loa	ads.					
PREREC	QUISIT	E COUF	RSES: Ni	il										
OURS	E EDU		IAL OBJ	ECTIVE	S:									
⁻ he obj	ective	s of the	course	are to	,									
٠					of effe	ctively	and ef	ficiently	/ utilizi	ng Elect	rical Er	nergy fo	or diff	erent
-			applicat		llighti	og prip	ciplos a	nd thai	r annli	cations.				
•					-		•		• •	Electric		tion an	d Electı	0
	•		process		_		_		,	_			_	
		COMES		r.	-									
Up	on the	succes	sful con	npletio	n of the	e cours	e, stude	ents wil	ll be ab	le to:			f learni	na
со					Course	Outco	mac						(Based	-
Nos.					Course	Outco	mes				1		l Bloom nomy)	n's
C01	Det	termine	e of MH	ICP and	MSCP	of vari	ous ligh	iting sys	stem.				K2	
C02	Illu	strate t	he Elec	tric He	ating, V	Veldin	g & Furi	nace pr	ocess				K2	
C03			e drive ent for			•••		Calculat	ion of	Power			K2	
C04		strate t olicatio		and re	equiren	nent of	electri	cal ene	rgy in t	traction			K2	
C05		olain th quirem		ro Mec	hanical	Proce	ss and	Calcula	tion of	Energy	,		K2	
ORRE		N OF CO	Ds WITH	I POs A	ND PS	Os								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	L								L	М	н	
CO2	Н	М										М	н	
CO3	Н	М	L								L	М	н	
		М	L								L	М	н	
CO4	Н	111	L											

	UNIT I	ILLUMINATION	9
Roussea	u's construction –	ermination of MHCP and MSCP – Polar curves of differ - Lighting schemes and calculations – Factory lighting – e – High pressure and low pressure.	
	UNIT II	ELECTRIC HEATING AND WELDING	9
efficienc		nd Arc furnaces – Construction and fields of applicatio y - Dielectric heating – Characteristics of carbon and me	
	UNIT III	ELECTRIC DRIVES AND CONTROL	9
characte	eristics - Mechani	drive – selection of motors – starting and running cl cal features of electric motors – Drives for different i requirement calculation – power factor improvement.	
	UNIT IV	ELECTRIC TRACTION	9
shunt an	nd bridge transitio	ime characteristics – Series and parallel control of D.C r ons – Tractive effort calculation – Electric braking – Tran end - Magnetic devitation	-
	UNIT V	ELECTROMECANICAL PROCESSES	9
Calculati batteries	ion of energy requ	factor – preparation work for Electro plating – Tanks a uirements – Methods of charging and maintenance – N atteries, Components and materials – Chemical reactic s.	i-iron and Ni- cadmiun
			TOTAL: 45 PERIODS
TEXT BO	OKS:		
	Uppal S.L, 'Electric	c Power', Khanna Publishers, 1988	
	Open Shaw Taylo	r, 'Utilization of Electrical Energy', Oriented Longmans	s Limited (Revised in S
1. (2. (Units), 1971.		
1. 2. (
1. (2. (REFEREN	Units), 1971. NCE BOOKS:	Power Quality in Electrical Systems', McGraw-Hill Profes	ssional, 2007
1. (2. (REFEREN 1. / 2. 5	Units), 1971. NCE BOOKS: Alexander Kusko ' Soni A. Chakraba	Power Quality in Electrical Systems', McGraw-Hill Profes arti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar, 'A Text Bo anna Publishers, 2000.	

COURSE CODE:	COURSE TITLE:	L	т	Ρ	С
10212EE152	ENERGY AUDITING AND MANAGEMENT	3	0	0	3
COURSE CATEGORY: Pr	ogramme Elective	1			I
PREAMBLE: This course energy audit.	e will helps to understand the various terms and m	nethodol	ogy ass	ociate	d with
PREREQUISITE COURSE	S: Nil				
COURSE EDUCATIONAL	OBJECTIVES:				
The objectives of the co	ourse are to,				
Understand the	concept of energy auditing and its importance				
Acquire knowle	dge on finance management				
Understand the	importance of energy efficient electrical system				
	I completion of the course, students will be able to:				
со		Level of	learnii	ng dom	ain

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
CO1	Describe energy scenario nationwide and worldwide	К2
CO2	Outline the energy management and audit methods	К2
CO3	Summarize financial management and Energy performance contracts	К2
CO4	Explain energy related aspects of electrical system	К2
CO5	Illustrate studies related to operational aspects of compressed air system	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н					L		L					Н	L
CO2	Н	Н	М			Μ			L		L	L	Н	L
CO3	Н	Н				М			L		L	L	Н	L
CO4	Н	Н	М			М	L						Н	L
CO5	Н	Н	М			М	L						Н	L

UNIT I	ENERGY SCENARIO	9
	ario of growing economy, Energy pricing, Energy sector reforms, Energy a rity, Energy conservation and its importance, Energy conservation Act-2001	
UNIT II	ENERGY MANAGEMENT AND AUDIT	9
costs, Bench efficiencies, instruments	- need, Types of energy audit, Energy management (audit) approach-unde marking, Energy performance, Matching energy use to requirement, ma Optimizing the input energy requirements, Fuel and energy substitution d Energy Balance: Methods for preparing process flow, Material and	aximizing system on, Energy audi
diagrams.		
UNIT III	FINANCIAL MANAGEMENT	9
	need, Appraisal and criteria, financial analysis techniques- Risk and sentions, Energy performance contracts and role of ESCOs.	nsitivity analysis
UNIT IV	ELECTRICAL SYSTEM	9
induction m	I riff, Load management and maximum demand control, T&D losses. Losses lotors, Factors affecting motor performance and remedial solutions, t source, Choice of lighting, Luminance requirements, and Energy conserva	energy efficien
induction m	notors, Factors affecting motor performance and remedial solutions,	energy efficien
induction m motors. Ligh UNIT V Types of air system comp HVAC and F Capacity, pe principle, Sa	notors, Factors affecting motor performance and remedial solutions, t source, Choice of lighting, Luminance requirements, and Energy conserva	energy efficien tion avenues 9 oressed air of performance system: Working
induction m motors. Ligh UNIT V Types of air system comp HVAC and F Capacity, pe principle, Sa	Anotors, Factors affecting motor performance and remedial solutions, t source, Choice of lighting, Luminance requirements, and Energy conservation COMPRESSED AIR SYSTEM compressors, Compressor efficiency, Efficient compressor operation, Comp conents, Capacity assessment. Refrigeration System: Vapour compression refrigeration cycle, Coefficient erformance and savings opportunities, Vapour absorption refrigeration s ving potential, Fans, Blowers and pumps- Types, Performance evaluation and energy conservation opportunities.	energy efficien tion avenues 9 oressed air of performance system: Working
induction m motors. Ligh UNIT V Types of air system comp HVAC and F Capacity, pe principle, Sa	COMPRESSED AIR SYSTEM compressors, Compressor efficiency, Efficient compressor operation, Compressors, Compressor efficiency, Efficient compressor operation, Compressor operation, System: Vapour compression refrigeration cycle, Coefficient erformance and savings opportunities, Vapour absorption refrigeration system ving potential, Fans, Blowers and pumps- Types, Performance evaluation denergy conservation opportunities.	energy efficien tion avenues 9 pressed air of performance system: Working on, Flow contro
induction m motors. Ligh UNIT V Types of air system comp HVAC and F Capacity, pe principle, Sa strategies ar TEXT BOOKS 1. Abbi	COMPRESSED AIR SYSTEM compressors, Compressor efficiency, Efficient compressor operation, Compressors, Compressor efficiency, Efficient compressor operation, Compressor operation, System: Vapour compression refrigeration cycle, Coefficient erformance and savings opportunities, Vapour absorption refrigeration system ving potential, Fans, Blowers and pumps- Types, Performance evaluation denergy conservation opportunities.	energy efficien tion avenues 9 oressed air of performance system: Working on, Flow contro TAL: 45 PERIOD
induction m motors. Ligh UNIT V Types of air of system comp HVAC and F Capacity, pe principle, Sa strategies ar TEXT BOOKS 1. Abbi Bool	COMPRESSED AIR SYSTEM COMPRESSED AIR SYSTEM compressors, Compressor efficiency, Efficient compressor operation, Comp connents, Capacity assessment. Refrigeration System: Vapour compression refrigeration cycle, Coefficient erformance and savings opportunities, Vapour absorption refrigeration system inving potential, Fans, Blowers and pumps- Types, Performance evaluation and energy conservation opportunities. TO S: A Y.P. and Jain, S., 'Handbook on Energy Audit and Environment Ma	energy efficien tion avenues 9 oressed air of performance system: Working on, Flow contro TAL: 45 PERIOD
induction m motors. Ligh UNIT V Types of air of system comp HVAC and F Capacity, pe principle, Sa strategies ar TEXT BOOKS 1. Abbi Bool	COMPRESSED AIR SYSTEM COMPRESSED AIR SYSTEM compressors, Compressor efficiency, Efficient compressor operation, Comp bonents, Capacity assessment. Refrigeration System: Vapour compression refrigeration cycle, Coefficient erformance and savings opportunities, Vapour absorption refrigeration system ving potential, Fans, Blowers and pumps- Types, Performance evaluation ad energy conservation opportunities. TO S: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5	energy efficien tion avenues 9 oressed air of performance system: Working on, Flow contro TAL: 45 PERIOD

REAMBLE: This co REREQUISITE CO OURSE EDUCATIO	Y: Progra ourse will JRSES: Ni DNAL OBJ	helps to I ECTIVES	ective know	MA	NAGEM			al safety	3 y and re	0 egulatic	0	3
REREQUISITE COR OURSE EDUCATION he objectives of t • To study	JRSES: Ni DNAL OBJ	helps to I ECTIVES	know ⁻	the bas	sic conce	epts of e	lectrica	al safety	y and re	egulatic	ins	
OURSE EDUCATION The objectives of the objectives of the objectives of the test of	JRSES: Ni DNAL OBJ	ECTIVES		the bas	sic conce	epts of e	lectrica	al safety	y and re	egulatio	ns	
he objectives of tTo study	DNAL OBJ	ECTIVES	; :									
• To study	ne course		5:									
•		are to r										
•	he elect		nake th	ie stud	ents,							
	nt.	rical saf	ety rul	es, reg	gulation	s and q	uality	manag	ement	by the	power	fact
OURSE OUTCOM	:S:											
Upon the s	uccessfu	comple	tion of	the co	urse, stu	idents w	vill be a	ble to:				
CO Nos.		Co	ourse O	utcom	es					-	vel (Baso 's Taxon	
CO1 Explain Ir	dian elec	tricity ru	ules and	d acts a	ind theii	signific	ance			K2	2	
CO2 Illustrate	the need	of elect	rical sa	fety in	differen	t locatio	ons			K2	2	
CO3 Outline t equipme		of electri	cal safe	ety duri	ng insta	llation c	of			K2	2	
CO4 Explain th	e necess	ity of ele	ectrical	safety	in Hazaı	dous zo	nes			K2	2	
CO5 Describe	the elect	rical safe	ety in di	istribut	ed syste	ems				K2	<u>></u>	
I								I				

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	L			М		М			L	М	Н	
CO2	Н	М	L			М		L				L	Н	
CO3	Н	М	L			М					L	L	Н	
CO4	Н	М	L			М		L			L	L	Н	
CO5	Н	М	L			М						L	Н	

COURSE CONTENT:

U	N	IT	I

INDIAN ELECTRICITY RULES AND ACTS AND THEIR SIGNIFICANCE

9

Objective and scope – ground clearances and section clearances – standards on electrical safety - safe limits of current, voltage – earthing of system neutral – Rules regarding first aid and firefighting facility.

UNIT II	ELECTRICAL SAFETY IN RESIDENTIAL, COMMERCIAL AND AGRICULTURAL INSTALLATIONS	9
multi-storied k	ing – Domestic appliances – water tap giving shock – shock from puilding – Temporary installations – Agricultural pump installatior omestic electrical appliances.	-
UNIT III	SAFETY DURING INSTALLATION, TESTING AND COMMISSIONING, OPERATION AND MAINTENANCE	9
quality and s	eparations – safe sequence – risk of plant and equipment – s afety - personal protective equipment – safety clearance no operators – safety	
UNIT IV	ELECTRICAL SAFETY IN HAZARDOUS AREAS	9
Specifications	nes – class 0,1 and 2 – spark, flashovers and corona discharge ar of electrical plants, equipments for hazardous locations – various hazardous gases and vapours – classification of equipm	Classification of equipment
UNIT V	ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM	9
Total quality c	ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM ontrol and management – Importance of high load factor – Disade v P.F. – power factor improvement – equipments – Importance of	vantages of low power factor
Total quality c	ontrol and management – Importance of high load factor – Disady	vantages of low power factor
Total quality c	ontrol and management – Importance of high load factor – Disady	vantages of low power factor f P.F. improvement
Total quality co – Causes of lov TEXT BOOKS: 1. Rao, S	ontrol and management – Importance of high load factor – Disady	vantages of low power factor f P.F. improvement TOTAL: 45 PERIODS

COURSE CODE:	COURSE TITLE:	L	Т	Ρ	С
10212EE154	RENEWABLE ENERGY SOURCES	3	0	0	3
COURSE CATEGORY: Prog	ramme Elective				

PREAMBLE: This course focuses on the new renewable energy based electric energy generation technologies and their integration into the power grid. The principals of new energy based distributed generation technologies: solar, wind, and fuel cells.

PREREQUISITE COURSES: Basic Electrical Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Introduce about the renewable energy sources like wind, solar and wave energy.
- Impart knowledge about the environment friendly energy production and consumption.
- Explain about energy-efficient systems and products for various applications.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
C01	Explain about Renewable Energy resources and importance.	К2
CO2	Outline the process of photovoltaic power generation.	К2
CO3	Outline the process of power generation using wind energy sources.	К2
CO4	Describe the biomass and biogas production techniques.	К2
CO5	Explain the fundamentals and applications of Geothermal energy, tidal energy, MHD and fuel cells.	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	М								М	М	Н	
CO2	Н	М	М								М	М	Н	L
CO3	Н	М	М								L	L	Н	L
CO4	Н	М	М									L	Н	L
CO5	Н	М	М									L	Н	L

UNIT	I INTRODUCTION	9
	energy use-reserves of energy resources-energy cycle of the earth-env ion-renewable energy resources and their importance.	ironmental aspects of energ
UNIT	II SOLAR ENERGY	9
heat tra	concepts, solar thermal systems and solar ponds, solar thermal central cansport system, thermal storage systems, photovoltaic energy convectors, solar cell, batteries, satellite solar power systems.	•
UNIT	III WIND ENERGY	9
•	les of wind power, wind turbine operation, site characteristics, horiz evelopments, small and large machines, magnus effect, design princips.	
UNIT	IV BIOMASS AND BIOGAS	9
biomas environ liquefac	ots and systems, biomass production, energy plantation, short rotat as resource agro forestry wastes, municipal solid wastes and agro p nmental factors and biomass energy development, combustion, ction, modeling, appliances and latest development, bioconversion: b ses, chemicals from biomass and biotechnology.	ocessing industrial residues pyrolysis, gasification and
hincess	ses, chemicals norm biomass and biotechnology.	
UNIT	V OTHER RENEWABLE ENERGY SOURCES	9
UNIT Geothe applicat Magnet		nergy, types, systems and applications
UNIT Geothe applicat Magnet	V OTHER RENEWABLE ENERGY SOURCES ermal energy, types, systems and application, Ocean thermal entions. Wave energy - types, systems and applications. Tidal energy - types to Hydrodynamic system (MHD). Fuel cells – types and applications, h	nergy, types, systems and bes, systems and applications ydrogen technologies. Micro
UNIT Geothe applicat Magnet hydel sy	V OTHER RENEWABLE ENERGY SOURCES ermal energy, types, systems and application, Ocean thermal entions. Wave energy - types, systems and applications. Tidal energy - types to Hydrodynamic system (MHD). Fuel cells – types and applications, has systems. Hybrid systems and applications	nergy, types, systems and bes, systems and applications ydrogen technologies. Micro
UNIT Geothe applicat Magnet hydel sy TEXT BO	V OTHER RENEWABLE ENERGY SOURCES ermal energy, types, systems and application, Ocean thermal entions. Wave energy - types, systems and applications. Tidal energy - types to Hydrodynamic system (MHD). Fuel cells – types and applications, has systems. Hybrid systems and applications	nergy, types, systems and bes, systems and applications ydrogen technologies. Micro TOTAL: 45 PERIODS
UNIT Geothe applicat Magnet hydel sy TEXT BO 1. 2.	V OTHER RENEWABLE ENERGY SOURCES ermal energy, types, systems and application, Ocean thermal energy - types, systems and applications. Tidal energy - types, to Hydrodynamic system (MHD). Fuel cells – types and applications, here the systems. Hybrid systems and applications COOKS: Rai G D, 'Non-Conventional Sources of Energy', Khanna Publishers, 200 othari P, K C Singal and Rakesh Ranjan, 'Renewable Energy Sources	nergy, types, systems and bes, systems and applications ydrogen technologies. Micro TOTAL: 45 PERIODS
UNIT Geothe applicat Magnet hydel sy TEXT BO 1. 2. REFERE	V OTHER RENEWABLE ENERGY SOURCES ermal energy, types, systems and application, Ocean thermal energy - types, systems and applications. Tidal energy - types, to Hydrodynamic system (MHD). Fuel cells – types and applications, have the systems. Hybrid systems and applications COOKS: Rai G D, 'Non-Conventional Sources of Energy', Khanna Publishers, 200 othari P, K C Singal and Rakesh Ranjan, 'Renewable Energy Sources PHI Pvt. Ltd., New Delhi, 2008.	nergy, types, systems and bes, systems and applications ydrogen technologies. Micro TOTAL: 45 PERIOD 06. and Emerging Technologies
UNIT Geothe applicat Magnet hydel sy TEXT BO 1. 2. REFERE 1.	V OTHER RENEWABLE ENERGY SOURCES ermal energy, types, systems and application, Ocean thermal energy - types, systems and applications. Tidal energy - types to Hydrodynamic system (MHD). Fuel cells – types and applications, have the systems. Hybrid systems and applications OOKS: COOKS: Rai G D, 'Non-Conventional Sources of Energy', Khanna Publishers, 200 othari P, K C Singal and Rakesh Ranjan, 'Renewable Energy Sources PHI Pvt. Ltd., New Delhi, 2008. ENCE BOOKS: KSukhatme S P and Nayak J K, 'Solar Energy - Principles of Thermal	nergy, types, systems an bes, systems and applications ydrogen technologies. Micro TOTAL: 45 PERIOD 06. and Emerging Technologies Collection and Storage', Tat
UNIT Geothe applicat Magnet hydel sy TEXT BO 1. 2. REFERE 1. 2.	V OTHER RENEWABLE ENERGY SOURCES ermal energy, types, systems and application, Ocean thermal entions. Wave energy - types, systems and applications. Tidal energy - types to Hydrodynamic system (MHD). Fuel cells – types and applications, haystems. Hybrid systems and applications OOKS: Rai G D, 'Non-Conventional Sources of Energy', Khanna Publishers, 200 othari P, K C Singal and Rakesh Ranjan, 'Renewable Energy Sources PHI Pvt. Ltd., New Delhi, 2008. ENCE BOOKS: KSukhatme S P and Nayak J K, 'Solar Energy - Principles of Thermal McGraw Hill, 2008. Frank Kreith and Yogi Goswami D, 'Handbook of Energy Efficiency	nergy, types, systems an bes, systems and applications ydrogen technologies. Micro TOTAL: 45 PERIOD 06. and Emerging Technologies Collection and Storage', Tat

	RSE CODE:			COU	RSE TIT	LE:			L	Т	Р	C
102	12EE155		SO	LAR ELE	CTRICS	SYSTEM	IS		3	0	0	3
COURSEC	CATEGORY: Prog	ramme Ele	ective						•			
REAMBL	E: This course	helps to	unders	tand So	olar Ce	lls and	Its Te	chnolo	gies, Pł	notovo	taic Pr	incipl
abricatio	on Technology											
PREREQU	ISITE COURSES:	Nil										
OURSE E	DUCATIONAL O	BJECTIVES	S:									
he objec	tives of the cour	se are to,										
-					urees lik	لمعايده	color	nd way				
	itroduce about t npart knowledge										~ ~	
			eenvire	Jiment	menui	yenerg	y prout			sumpti	511.	
JUUKSE (
	DUTCOMES:	omplotion	oftho	courco	ctudor	te will k	aa ahla	to:				
Upon	the successful c	ompletion	of the	course,	studer	its will b	pe able		nowled		vel (Bas	ed or
				course, Dutcom		its will k	oe able	k		-	vel (Bas	
Upon CO		C	ourse C	Dutcom	es		oe able	k		-	s Taxor	
Upon CO Nos.	the successful c	C solar ener	ourse C	Dutcom its tech	es		be able	k		Bloom	s Taxor	
Upon CO Nos. CO1	the successful c Explain about	C solar ener notovoltaio	ourse C rgy and c princi	Dutcom its tech ples	es inologie		be able	k		Bloom' K2	s Taxor	
Upon CO Nos. CO1 CO2	the successful c Explain about Outline the ph	C solar ener notovoltaio lar cell fab	ourse C rgy and c princip prication	Dutcom its tech ples n techno	es inologie ology	25	be able	k		K2 K2	s Taxor	
Upon CO Nos. CO1 CO2 CO3	the successful c Explain about Outline the ph Explain the so	Consolar ener notovoltaio lar cell fab rformance	ourse C rgy and c princip prication e of sola	Dutcom its tech ples n techno ar array	es inologie ology system	25		k		Bloom' K2 K2 K2	s Taxor	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	н	М	L								L	М	Н	
CO2	н	М	L								L	М	Н	L
CO3	н	М	L								L	М	Н	L
CO4	н	М	L								М	М	н	L
CO5	н	L	L								L	М	н	L
COURS	SE CON	TENT:												

UNIT I SOLAR CELLS AND ITS TECHNOLOGIES

Solar cells: working of solar cells, I-V characteristics, conversion efficiency, losses in solar cells, high efficiency solar cells, quantum dots, multi junction solar cells.

Solar cell technologies: Material selection, solar cell fabrication, amorphous, single and poly crystalline silicon solar cells, thin film solar cells, organic solar cells, first-, second- and third-generation solar cells, advantages, drawbacks, latest developments; concentrated PV systems. Testing, standardization and evaluation of solar cells.

9

UNIT II	PHOTOVOLTAIC PRINCIPLES	9
Solar Cell	Physics: p-n junction: homo and heterojunctions, Metal-semiconductor	interface; The
Photovolt	aic Effect, Equivalent Circuit of the Solar Cell, Analysis of PV Cells: Dark a	and illumination
characteri	stics; Figure of merits of solar cell; Efficiency limits; Variation of efficiend	cy with band-gap and
temperati	are; Efficiency measurements; High efficiency cells, Types of Solar cells.	
UNIT III	SOLAR CELL FABRICATION TECHNOLOGY	9
Czokralski a complet	on of metallurgical, electronic and solar grade Silicon; Production (CZ) and Float Zone (FZ) method: Procedure of masking, photolithograp e silicon, GaAs, InP solar cell; High efficiency III-V, II-VI multi-junction so ntum well solar cell, Thermo-photovoltaics.	phy and etching; Design c
UNIT IV	SOLAR PHOTOVOLTAIC SYSTEM DESIGN	9
Solar cell	array system analysis and performance prediction; Shadow analysis:	Reliability; Solar cell arra
design co	ncepts; PV system design; Design process and optimization; Detail	ed array design; Storag
autonom	; Voltage regulation; Maximum tracking; Use of computers in array de	sign; Quick sizing methoo
aaconomy		
	ection and trouble shooting.	
Array prot UNIT V Centralize installatio systems. 1	ection and trouble shooting. SPV APPLICATIONS d and decentralized SPV systems; Stand alone, hybrid and, grid connect n, operation and maintenances; Field experience; PV market analysis an The Recent developments in Solar cells, Role of nano-technology in Solar stem. Lighting, refrigeration, telecommunications, aerospace, agricultur	d economics of SPV r cell. Solar thermal
Array prot UNIT V Centralize installatio systems. T electric sy	SPV APPLICATIONS d and decentralized SPV systems; Stand alone, hybrid and, grid connector, operation and maintenances; Field experience; PV market analysis an The Recent developments in Solar cells, Role of nano-technology in Solar	ed system, System ad economics of SPV r cell. Solar thermal re, fencing, water
Array prot UNIT V Centralize installatio systems. T electric sy purificatio	SPV APPLICATIONS d and decentralized SPV systems; Stand alone, hybrid and, grid connecten, operation and maintenances; Field experience; PV market analysis an The Recent developments in Solar cells, Role of nano-technology in Solar stem. Lighting, refrigeration, telecommunications, aerospace, agricultur n, navigation, defence, offshore, etc.	ed system, System Id economics of SPV r cell. Solar thermal
Array prot UNIT V Centralize installatio systems. 1 electric sy purificatio	SPV APPLICATIONS d and decentralized SPV systems; Stand alone, hybrid and, grid connecten, operation and maintenances; Field experience; PV market analysis an The Recent developments in Solar cells, Role of nano-technology in Solar stem. Lighting, refrigeration, telecommunications, aerospace, agriculturen, navigation, defence, offshore, etc.	ed system, System ad economics of SPV r cell. Solar thermal re, fencing, water TOTAL: 45 PERIOD
Array prot UNIT V Centralize installatio systems. 1 electric sy purificatio TEXT BOC 1. Co	SPV APPLICATIONS d and decentralized SPV systems; Stand alone, hybrid and, grid connecten, operation and maintenances; Field experience; PV market analysis an The Recent developments in Solar cells, Role of nano-technology in Solar stem. Lighting, refrigeration, telecommunications, aerospace, agricultur n, navigation, defence, offshore, etc.	ed system, System ad economics of SPV r cell. Solar thermal re, fencing, water TOTAL: 45 PERIOD
Array prot UNIT V Centralize installatio systems. 1 electric sy purificatio TEXT BOC 1. Co TE 2. CS	SPV APPLICATIONS d and decentralized SPV systems; Stand alone, hybrid and, grid connecten, operation and maintenances; Field experience; PV market analysis an The Recent developments in Solar cells, Role of nano-technology in Solar stem. Lighting, refrigeration, telecommunications, aerospace, agriculturen, navigation, defence, offshore, etc.	ed system, System Id economics of SPV r cell. Solar thermal re, fencing, water TOTAL: 45 PERIOD chnology – A Knowledge
Array prot UNIT V Centralize installatio systems. 1 electric sy purificatio TEXT BOC 1. Co TE 2. CS Ki	SPV APPLICATIONS d and decentralized SPV systems; Stand alone, hybrid and, grid connecten, operation and maintenances; Field experience; PV market analysis an The Recent developments in Solar cells, Role of nano-technology in Solar stem. Lighting, refrigeration, telecommunications, aerospace, agriculturen, navigation, defence, offshore, etc. KS: pompendium ed. VVN Kishore, 'Renewable Energy Engineering and Teces RI Press, 2008. S Solanki, 'Solar Photovotaics – Fundamentals', Technologies and A	ed system, System Id economics of SPV r cell. Solar thermal re, fencing, water TOTAL: 45 PERIOD chnology – A Knowledge
Array prot UNIT V Centralize installatio systems. T electric sy purificatio TEXT BOC 1. Co TE 2. CS Ki REFERENC	SPV APPLICATIONS d and decentralized SPV systems; Stand alone, hybrid and, grid connecten, operation and maintenances; Field experience; PV market analysis an The Recent developments in Solar cells, Role of nano-technology in Solar stem. Lighting, refrigeration, telecommunications, aerospace, agricultur n, navigation, defence, offshore, etc. KS: pompendium ed. VVN Kishore, 'Renewable Energy Engineering and Teces (RI Press, 2008. S Solanki, 'Solar Photovotaics – Fundamentals', Technologies and A ndle Edition, 2011	ed system, System Id economics of SPV r cell. Solar thermal re, fencing, water TOTAL: 45 PERIOD chnology – A Knowledge pplications, PHI Learning
Array prof UNIT V Centralize installatio systems. T electric sy purificatio TEXT BOC 1. Co TE 2. CS Ki REFERENC 1. SP 2. M	SPV APPLICATIONS d and decentralized SPV systems; Stand alone, hybrid and, grid connecten, operation and maintenances; Field experience; PV market analysis an 'he Recent developments in Solar cells, Role of nano-technology in Solar stem. Lighting, refrigeration, telecommunications, aerospace, agriculture, navigation, defence, offshore, etc. KS: pompendium ed. VVN Kishore, 'Renewable Energy Engineering and Technologies and A referse, 2008. Solanki, 'Solar Photovotaics – Fundamentals', Technologies and A ndle Edition, 2011 EBOOKS:	ed system, System Id economics of SPV r cell. Solar thermal re, fencing, water TOTAL: 45 PERIOD chnology – A Knowledge pplications, PHI Learning
Array prof UNIT V Centralize installatio systems. T electric sy purificatio TEXT BOC 1. Co TEXT BOC 1. Co Ki REFERENC 1. SP 2. M H	SPV APPLICATIONS d and decentralized SPV systems; Stand alone, hybrid and, grid connecter, n, operation and maintenances; Field experience; PV market analysis an 'he Recent developments in Solar cells, Role of nano-technology in Solar stem. Lighting, refrigeration, telecommunications, aerospace, agricultur n, navigation, defence, offshore, etc. KS: mpendium ed. VVN Kishore, 'Renewable Energy Engineering and Tec RI Press, 2008. S Solanki, 'Solar Photovotaics – Fundamentals', Technologies and A ndle Edition, 2011 E BOOKS: M Sze, Kwok K 'Physics of Semiconductor Devices', 3 rd Edition, John Wile A Green, 'Solar Cells Operating Principles, Technology, and Syster	ed system, System Id economics of SPV r cell. Solar thermal re, fencing, water TOTAL: 45 PERIOD chnology – A Knowledge pplications, PHI Learning

COUR	SE CODE:		COURSE TITLE	:		L	Т	Р	C
102:	12EE156	WIND ENE		ON SYSTEM	S	3	0	0	3
OURSE CA	TEGORY: Program	ime Elective							
	Wind energy is	-	-	source for	electri	city ge	neratio	n. This	cour
resents a b	oroad overview of	wind energy te	chnology.						
REREQUIS	ITE COURSES: Bas	ic Electronics a	nd Measuremen	t Engineerin	g				
	UCATIONAL OBJE	CTIVES:							
ne objectiv	es of the course a	are to,							
• Kno	w about Power e	traction from v	vind energy						
• Und	lerstand the com	onents and des	sign of wind tow	er					
• Und	lerstand working	principle of indu	uction generator	, synchrono	us gene	erator			
OURSE OU	TCOMES:								
OURSE OU Upon th	TCOMES: le successful com	pletion of the co	ourse, students v	vill be able t	0:				
Upon th		pletion of the co	ourse, students v	vill be able t	o:		vledge l	-	
			ourse, students v Outcomes	vill be able t	0:		vledge L revised Taxon	Bloon	
Upon th	e successful com	Course undamentals c					revised	l Bloon omy)	
Upon th CO Nos.	Explain the f	Course undamentals c s.	Outcomes	conversion	and		revised Taxon	l Bloon omy) 2	
Upon th CO Nos. CO1	Explain the f measurement Summarize th	Course undamentals c s. e types of wind	Outcomes of wind energy	conversion rodynamics.	and		Taxon	1 Bloon omy) 2	
Upon th CO Nos. CO1 CO2	Explain the f measurement Summarize th Explain the construction.	Course undamentals c s. e types of wind basic compone	Outcomes of wind energy turbines and aer	conversion rodynamics. turbine an	and d its		revised Taxon K	I Bloon omy) 2 2	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н									L	L	Н	L
CO2	Н	Н									L	L	Н	L
CO3	Н	Н									L	L	Н	L
CO4	Н	Н									L	L	Н	L
CO5	Н	Н									L	L	Н	L
<u> </u>														

UNIT I	WIND ENERGY FUNDAMENTALS AND MEASUREMENTS	9
wind turbine-	isics - Wind speed and scales - Terrain-Roughness-Wind mecha Atmospheric boundary layers-Turbulence. Instrumentation fo abulation. Wind resource estimation - Betz's Limit-Turbulence a	r wind measurements - Wind
UNIT II	WIND TURBINE AREODYNAMICS AND TYPES	9
technique (Roto Constant freque	ogy - Blade element theory - Blade design - Rotor performa or &Blade)-Types of loads - Source of loads-Vertical axis type -H ency - Variable speed variable frequency - Up wind-Down win enerator type - Direct generator drive/PMG/Rotor excited sync	orizontal axis - Constant speed d - Stall control-Pitch control
UNIT III	GEAR COUPLED GENERATOR WIND TURBINE COMPONENTS AND THEIR CONSTRUCTION	9
synchronisation Compensation circuits - Gene Battery/Super c	nsors /Encode /Resolvers - Wind measurement: anemon system - Soft starter - Switchgear [ACB/VCB]-Transform panel - Programmable logic control – UPS - Yaw & pitch sys erator rotor resistor controller(Flexi slip) - Differential prot apacitor charger & Batteries/Super capacitor for pitch system- lation & Vibration sensing.	er - Cables and assembly tem: AC drives - Safety chair tection relay for generator
UNIT IV	DIRECT ROTOR COUPLED GENERATOR (MULTIPOLE)[VARIABLE SPEED –VARIABLE FREQUENCY	9
(DC-DC Step Up	nch. Generator/PMG generator - Control Rectifier-Capacitor ba b) - Grid tied inverter - Power management - Grid monitorin afety chain circuits.	• •
UNIT V	MODERN WIND TURBINE CONTROL & MONITORING SYSTEM	9
turbine monito Operation & Ma	system & Control Algorithms-Protections used & Safety considering with error codes - SCADA & Databases: remote monito aintenance for product lifecycle - Balancing technique (Rotor & Sor new grid codes.	ring and generation reports
		TOTAL: 45 PERIODS
TEXT BOOKS:		
Press, 2	ishore, 'Renewable Energy Engineering and Technology – A Kno 008. OL Hansen 'Aerodynamics of Wind Turbines', 2 nd Edition, Earths	
REFERENCE BO	•	
	n, G.L., 'Wind Energy Systems', Prentice Hall, 1985.	
1. Johnsor		ion 2006
	in 'Non-Conventional Energy Sources', Tata McGraw-Hill Educat	
2. B.H.Kha	in 'Non-Conventional Energy Sources', Tata McGraw-Hill Educat pe, 'Wind energy Basics: A Guide to Small and Micro Wind', Che	

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10212EE157	GENERATION PLANNING	3	0	0	3

PREAMBLE: It is aimed to provide the basics of power system planning, particularly on generation capacity expansion planning and provide the information about the impact of environmental pollution, reliability on integration of demand and supply side management activities in addition renewable energy sources penetration.

PREREQUISITE COURSES: Power System Operation and Control

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Understand the load forecasting techniques, power generation reliability indices
- Know the basic concepts of generation expansion planning and WASP-IV module
- Compare the demand side and supply side management in GEP studies and the effect of penetration of renewable energy resources in power system

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Interpret the load forecasting techniques	К2
CO2	Explain types of reliability indices for power generation system	К2
CO3	Illustrate the basic concept of GEP problem	К2
CO4	Solve the effect of DSM and SSM activities in GEP	К3
CO5	Identify the impact of renewable energy on environmental pollution and reliability of power system	КЗ

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Μ		L								L	Н	L
CO2	Н	Н		М									Н	L
CO3	Н	L		L	М						L	L	Н	L
CO4	Н	L	М	М	М						L		Н	L
CO5	н	L	М	М	М		М				L	L	Н	L

COURSE C		
UNIT I	LOAD FORECASTING	9
- factors	em planning- Objective- Stages in planning and design - need for accurate load affecting forecasting- approaches- methodology- Short-run and long run- s-Peak demand and Energy forecasting	-
UNIT II	POWER GENERATION RELIABILITY	9
	erating Capacity Reliability Evaluation- Outage definitions-reliability indices- ((LOLP) - expected energy not served (EENS) - capacity outage probability tal blems.	
UNIT III	GENERATION COST OPTIMIZATION	9
- candidat	Formulation of least cost optimization problem- capital, operation and mainte e units - different types- Wien Automatic System Planning- IV (WASP-IV) mod imple simulation studies	
UNIT IV	DEMAND SIDE MANAGEMENT (DSM) AND SUPPLY SIDE MANAGEMENT (SSM)	9
manageme	oduction- driving factors- benefits- DSM measures-Energy reduction programent programmes - chains - ch	
manageme implement SSM –Intro		allenges o
manageme implement SSM –Intro	ent programmes - Load growth and conservation programmes - chating DSM programmes boduction-options and opportunities - constraints and challenges - integration	allenges o
manageme implement SSM –Intro SSM in ger UNIT V Benefits o	ent programmes - Load growth and conservation programmes - cha ting DSM programmes oduction-options and opportunities - constraints and challenges - integration heration planning	of DSM and
manageme implement SSM –Intro SSM in ger UNIT V Benefits o	ent programmes - Load growth and conservation programmes - chating DSM programmes oduction-options and opportunities - constraints and challenges - integration heration planning GENERATION PLANNING WITH RENEWABLE ENERGY f renewable energy sources- Modelling of wind and solar plants in plann bad modelling- environmental analysis and reliability analysis.	of DSM and
manageme implement SSM –Intro SSM in ger UNIT V Benefits o negative lo	ent programmes - Load growth and conservation programmes - chating DSM programmes oduction-options and opportunities - constraints and challenges - integration heration planning GENERATION PLANNING WITH RENEWABLE ENERGY f renewable energy sources- Modelling of wind and solar plants in plann bad modelling- environmental analysis and reliability analysis.	allenges o of DSM and 9 ing studies
manageme implement SSM –Intro SSM in ger UNIT V Benefits o negative lo TEXTBOOK	ent programmes - Load growth and conservation programmes - chating DSM programmes oduction-options and opportunities - constraints and challenges - integration heration planning GENERATION PLANNING WITH RENEWABLE ENERGY f renewable energy sources- Modelling of wind and solar plants in plann bad modelling- environmental analysis and reliability analysis.	allenges o of DSM and 9 ing studies
manageme implement SSM –Intro SSM in ger UNIT V Benefits o negative lo TEXTBOOH 1. Su	ent programmes - Load growth and conservation programmes - chating DSM programmes oduction-options and opportunities - constraints and challenges - integration meration planning GENERATION PLANNING WITH RENEWABLE ENERGY of renewable energy sources- Modelling of wind and solar plants in plann oad modelling- environmental analysis and reliability analysis. TOTAL: 4	allenges o of DSM and 9 ing studies 45 PERIODS
manageme implement SSM –Intro SSM in ger UNIT V Benefits o negative lo TEXTBOOH 1. Su 2. Jan	ent programmes - Load growth and conservation programmes - chating DSM programmes oduction-options and opportunities - constraints and challenges - integration meration planning GENERATION PLANNING WITH RENEWABLE ENERGY f renewable energy sources- Modelling of wind and solar plants in plann oad modelling- environmental analysis and reliability analysis. TOTAL: 4 CS: Ilivan, R. L. 'Power System Planning', McGraw-Hill New York, 1977 mes McDonald, Wang Xifan, 'Modern Power System Planning', McGraw-Hill, 19	allenges o of DSM and 9 ing studies 45 PERIODS
manageme implement SSM –Intro SSM in ger UNIT V Benefits o negative lo TEXTBOOH 1. Su 2. Jan REFERENC 1. Ro Co 2. Ro	ent programmes - Load growth and conservation programmes - chating DSM programmes oduction-options and opportunities - constraints and challenges - integration meration planning GENERATION PLANNING WITH RENEWABLE ENERGY f renewable energy sources- Modelling of wind and solar plants in plann oad modelling- environmental analysis and reliability analysis. TOTAL: 4 CS: Ilivan, R. L. 'Power System Planning', McGraw-Hill New York, 1977 mes McDonald, Wang Xifan, 'Modern Power System Planning', McGraw-Hill, 19	allenges o of DSM and 9 ing studies 45 PERIODS 94. g Systems ated Powe
manageme implement SSM –Intro SSM in ger UNIT V Benefits o negative lo TEXTBOOH 1. Su 2. Jan REFERENC 1. Ro Co 2. Ro Sy Sp 3. Se	ent programmes - Load growth and conservation programmes - chaing DSM programmes oduction-options and opportunities - constraints and challenges - integration neration planning GENERATION PLANNING WITH RENEWABLE ENERGY f renewable energy sources- Modelling of wind and solar plants in plann bad modelling- environmental analysis and reliability analysis. TOTAL: 4 CS: Ilivan, R. L. 'Power System Planning', McGraw-Hill New York, 1977 mes McDonald, Wang Xifan, 'Modern Power System Planning', McGraw-Hill, 19 E BOOKS: y Billinton and Ronald N. Allan, 'Reliability Evaluation of Engineerin ncepts and Techniques', Springer science-Business Media, 1992. y Billinton and Rajesh Karki, 'Reliability and Risk Evaluation of Wind Integr	allenges o of DSM and 9 ing studies 45 PERIODS 94. g Systems ated Powe inagement)

COURSE CODE: COURSE TITLE:	L	т	Р	С
10212EE158 SOLAR PHOTOVOLTAIC SYSTEMS	3	0	0	3

PREAMBLE: This course emphasizes the growing demand of renewable energy sources especially harnessing power from sun. Solar Photo Voltaic technology and systems comprise of the fundamentals, design, optimization and application of solar photovoltaic systems for power generation on small- and large-scale electrification.

PRE-REQUISITES: Basic Electronics and Measurement Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Familiar with basics of solar PV
- Familiar with various PV performance measure terminologies.
- Understand about manufacturing of PV cells & sizing aspects of PV systems.
- Understand about PV system components and apply them in installation practices & associated trouble shootings.
- Understand about PV system applications and associated safety measures.

COURSE OUTCOMES:

Upon the completion of the course students will be able to

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the principle of direct solar energy conversion to power using PV	К2
CO2	Contrast the performance measures of PV	К2
CO3	Infer on solar cells & design aspects of solar PV	К2
CO4	Identify PV components and installation practices	К2
CO5	Develop ideas for working on solar PV systems and associated safety practices	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L					Н							L
CO2	Н	М					L					Н		
CO3	Н	М			Н		L					Н		н
CO4	Н	Н					L							Н
CO5	Н	Н	Н		Н	Н	Н		Н		Н		М	Н

UNIT I	SOLAR CELL FUNDAMENTALS	9
•	ergy conversion, Photovoltaic effect, Semiconductor pro	operties, energy levels
UNIT II	PV MODULE PERFORMANCE	9
	s & arrays, I-V &P-V characteristics, maximum power iciency, fill factor, role of bypass & blocking diode, factor	•
UNIT III	MANUFACTURING OF PV CELLS & DESIGN OF PV SYSTEMS	9
cells, amorphous sili	Is - Production process of single crystalline silicon cells, m con, cadmium telluride, copper indium gallium diselenide mation, various aspects, system simulation tools.	•
UNIT IV	SOLAR PV SYSTEMS INSTALLATIONS & TROUBLE SHOOTING	9
	em, small system for consumer applications, hybrid photovoltaic. System components - PV arrays, inverters	•
concentrator solar	photovoltaic. System components - PV arrays, inverters ring. PV array installation, operation, costs, reliability. Tro	s, batteries, charge
concentrator solar p controllers, net meter system components. UNIT V Building-integrated p for distributed pow challenges, Application	photovoltaic. System components - PV arrays, inverters ring. PV array installation, operation, costs, reliability. Tro	s, batteries, charge publeshooting of PV 9 s, stand-alone devices Indian PV industry& aft, space solar power safety in Installation of
concentrator solar p controllers, net meter system components. UNIT V Building-integrated p for distributed pow challenges, Applicati satellites. Socio-ecor solar PV systems	PV arrays, inverters ering. PV array installation, operation, costs, reliability. Tro PV SYSTEM APPLICATIONS & SAFETY photovoltaic units, grid connected central power station er supply in remote and rural areas, Outlook for the ons: solar home system, solar cars, Solar Charger, aircra	s, batteries, charge publeshooting of PV 9 s, stand-alone devices Indian PV industry& aft, space solar power
concentrator solar p controllers, net meter system components. UNIT V Building-integrated p for distributed pow challenges, Applications satellites. Socio-ecor solar PV systems TEXTBOOKS: 1. Chetan Singh Learning Pvt	PV SYSTEM APPLICATIONS & SAFETY PV SYSTEM APPLICATIONS & SAFETY photovoltaic units, grid connected central power station er supply in remote and rural areas, Outlook for the ons: solar home system, solar cars, Solar Charger, aircra nomic and environmental merits of photovoltaic systems s a Solanki., 'Solar Photovoltaic: Fundamentals, Technologie , Ltd., 2009.	s, batteries, charge publeshooting of PV 9 s, stand-alone devices Indian PV industry& aft, space solar power safety in Installation of TOTAL: 45 PERIODS
concentrator solar p controllers, net meter system components. UNIT V Building-integrated p for distributed pow challenges, Applications satellites. Socio-ecor solar PV systems TEXTBOOKS: 1. Chetan Singh Learning Pvt 2. Jha A.R., 'Sol	photovoltaic. System components - PV arrays, inverters pring. PV array installation, operation, costs, reliability. Tro PV SYSTEM APPLICATIONS & SAFETY photovoltaic units, grid connected central power station er supply in remote and rural areas, Outlook for the ons: solar home system, solar cars, Solar Charger, aircra pomic and environmental merits of photovoltaic systems s a Solanki., 'Solar Photovoltaic: Fundamentals, Technologie	s, batteries, charge publeshooting of PV 9 s, stand-alone devices Indian PV industry& aft, space solar power safety in Installation of TOTAL: 45 PERIOD
concentrator solar p controllers, net meters system components. UNIT V Building-integrated p for distributed pow challenges, Applications satellites. Socio-ecor solar PV systems TEXTBOOKS: 1. Chetan Singh Learning Pvt 2. Jha A.R., 'Sol REFERENCE BOOKS:	PV system components - PV arrays, inverters pring. PV array installation, operation, costs, reliability. Tro PV system APPLICATIONS & SAFETY photovoltaic units, grid connected central power station er supply in remote and rural areas, Outlook for the ons: solar home system, solar cars, Solar Charger, aircra iomic and environmental merits of photovoltaic systems s Solanki., 'Solar Photovoltaic: Fundamentals, Technologies , Ltd., 2009. ar Cell Technology and Applications', CRC Press, 2010.	s, batteries, charge publeshooting of PV 9 s, stand-alone devices Indian PV industry& aft, space solar power safety in Installation of TOTAL: 45 PERIOD s and Application', PHI
concentrator solar p controllers, net meter system components. UNIT V Building-integrated p for distributed pow challenges, Applicati satellites. Socio-ecor solar PV systems TEXTBOOKS: 1. Chetan Singh Learning Pvt 2. Jha A.R., 'Sol REFERENCE BOOKS: 1. Chetan Singh	PV SYSTEM APPLICATIONS & SAFETY PV SYSTEM APPLICATIONS & SAFETY photovoltaic units, grid connected central power station er supply in remote and rural areas, Outlook for the ons: solar home system, solar cars, Solar Charger, aircra iomic and environmental merits of photovoltaic systems s Solanki., 'Solar Photovoltaic: Fundamentals, Technologie , Ltd., 2009. ar Cell Technology and Applications', CRC Press, 2010.	s, batteries, charge publeshooting of PV 9 s, stand-alone devices Indian PV industry& aft, space solar power safety in Installation of TOTAL: 45 PERIOD s and Application', PHI
concentrator solar p controllers, net meters system components. UNIT V Building-integrated p for distributed pow challenges, Applications satellites. Socio-ecor solar PV systems TEXTBOOKS: 1. Chetan Singh Learning Pvt 2. Jha A.R., 'Sol REFERENCE BOOKS: 1. Chetan Singh 2. Partain L.D.,	PV system components - PV arrays, inverters pring. PV array installation, operation, costs, reliability. Tro PV system APPLICATIONS & SAFETY photovoltaic units, grid connected central power station er supply in remote and rural areas, Outlook for the ons: solar home system, solar cars, Solar Charger, aircra iomic and environmental merits of photovoltaic systems s Solanki., 'Solar Photovoltaic: Fundamentals, Technologies , Ltd., 2009. ar Cell Technology and Applications', CRC Press, 2010.	s, batteries, charge publeshooting of PV 9 s, stand-alone devices Indian PV industry& aft, space solar power safety in Installation of TOTAL: 45 PERIOD s and Application', PHI Private Limited, 2015. , Wiley, 2010.

		CODE:					RSE TIT				1	. Т	Р	C
102	12E	E159			I	NANO	ELECTR	ONICS			3	8 0	0	3
COUR	SE C	ATEGOR	Y: Prog	ramme	Electiv	'e								
		E: The p 5. This co	•				•						-	
PRERE	QUI	SITE CO	URSES:	Engine	ering P	hysics								
COUR	SE E	DUCATIO	ONAL O	BJECTI	VES:									
The ob	oject	ives of t	he cour	se are t	:0,									
•		ow the t no mate		nanot	echnol	ogy, ato	omic st	ructure	e, molec	cular tec	hnology	and pro	eparatio	on of
•	Ur	Iderstan	d the fu	Indame	entals o	f nano	electro	onics ar	nd its pr	operties	5.			
•	Kn	ow the S	Silicon N	NOSFE	ſ's, QTI) and c	arbon ı	nano tu	ubes.					
•	Ur	derstan	d the fu	Indame	entals o	f mole	cular el	ectron	ics					
		итсом												
	the s	successf	ul comp	letion	of the o	ourse,	studen	its will	be able					
CO Nos.				Co	ourse C	outcom	es				nowled vised B	-		
CO1		Discuss t and the						cular te	echnolo	gy		К2		
CO2		Explains devices,							as log	gic		К2		
CO3		Describe Franspo		-	s of si	licon N	NOSFE	Г and	Quantu	im		К2		
CO4		Summar applicati					s, inte	erconne	ects a	nd		К2		
CO5		Explain applicati		concep nolecu				bricatio	ons a	nd		К2		
CORRE	ELAT	ION OF	COs Wi	TH POs	AND F	SOs								
COs	PO	L PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
CO1	Н	L										L	М	
CO2	Н	L										L	М	
CO3	Н	L	L								L	L	М	L
CO4	Н	L										L	М	
CO5	Н	L	L								L	L	М	L
COUR	SE C	ONTENT	:											
ι	רואט	.1	INTRO	DUCTI	ON TO	NANO	TECHN	OLOG	(9	
		on: Disc ics from							-		tics: Nee	ed for n	ew con	cepts

Background to nanotechnology: Types of nanotechnology and nanomachines – periodic table – atomic structure – molecules and phases – energy – molecular and atomic size – surface and dimensional space – top down and bottom up.

Molecular Nanotechnology: Electron Microscope – Scanning Electron Microscope – Atomic Force Microscope – Scanning Tunneling Microscope.

Nanomaterials: Preparation –Plasma Arcing – Chemical Vapor Deposition – Sol-Gels – Electrode Position – Ball Milling – Applications Of Nanomaterials.

UNIT II	FUNDAMENTALS OF NANO ELECTRONICS	9
---------	----------------------------------	---

Fundamentals of logic devices: requirements – dynamic properties – threshold gates; physical limits to computations; concepts of logic devices: classifications – two terminal devices – field effect devices – coulomb blockade devices – spintronics – quantum cellular automata – quantum computing – DNA computer; performance of information processing systems;- basic binary operations, measure of performance processing capability of biological neurons – performance estimation for the human brain. Ultimate computation: power dissipation limit – dissipation in reversible computation – the ultimate computer.

UNIT III	SILICON MOSFETS & QUANTUM TRANSPORT DEVICES	9
•••••		

Silicon MOSFETS - Novel materials and alternate concepts: fundamentals of MOSFET Devices- scaling rules – silicon-dioxide based gate dielectrics – metal gates – junctions & contacts – advanced MOSFET concepts. Quantum transport devices based on resonant tunneling: Electron tunneling – resonant tunneling diodes – resonant tunneling devices; Single electron devices for logic applicationsSingle electron devices – applications of single electron devices to logic circuits.

UNIT IV	CARBON NANOTUBES	
---------	------------------	--

Carbon Nanotube: Fullerenes - types of nanotubes – formation of nanotubes – assemblies - purification of carbon nanotubes – electronic properties – synthesis of carbon nanotubes – carbon nanotube interconnects – carbon nanotube FETs – nanotube for memory applications – prospects of all carbon nanotube nanoelectronics.

UNIT V	MOLECULAR ELECTRONICS	9

Electrodes & contacts – functions – molecular electronic devices – first test systems – simulation and circuit design – fabrication; Future applications: MEMS – robots – random access memory – mass storage devices.

TOTAL: 45 PERIODS

9

TEXT BOOKS:

- 1. Michael Wilson, KamaliKannangara, Geoff Smith, Michelle Simmons and Burkhard
- 2. Raguse, Nanotechnology: Basic Science and Emerging Technologies, Chapman & Hall / CRC, 2002.

REFERENCE BOOKS:

- 1. Rainer Waser (Ed.), Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Wiley-VCH, 2003.
- 2. T. Pradeep, NANO: The Essentials Understanding Nanoscience and Nanotechnology, TMH, 2007.M.Ziese and M.J Thornton (Eds.)"Spin Electronics ", Springer-verlag 2001.
- 3. M.Dutta and M.A Stroscio Edited by "Quantum Based Electronic Devices and systems", world Scientific, 2000.

ONLINE RESOURCES:

1. <u>https://www.edx.org/course/fundamentals-nanoelectronics-part-b-purduex-nano521x</u>

COL	JRSE	CODE:				CO	URSE T	TTLE:				L	Т	Р	C
10	212 E	E160				GREE	N ELEC	RONIC	CS .			3	0	0	3
COUR	RSE C/	ATEGOR	/: Prog	ramme	Electiv	'e									
meth produ	ods, ucts.	: This co and rele It is ex ntal imp	vant h pected	ands-o that	n expe studen	erience ts will	for de devel	esigning op the	g a rar eir abil	nge of ity to	sustaina address	able ; 5 rele	gree evan	n elect it issue	tronic es on
PRER	EQUI	SITE COL	JRSES:	Enviror	nment	Engine	ering								
COUR	RSE EI	DUCATIC	NAL O	BJECTI	VES:										
The o	bject	ves of th	ne cour	se are t	:0,										
•	Stu	idy the ii	ntrodu	ction of	green	electro	onics								
•		idy the g					•								
•		idy the g													
•	Stı	idy the f	lıp-chip	assem	bly and	a bondi	ng tor I	ead-fre	ee elect	tronics					
		UTCOME	-												
Upon	the s	uccessfu	l comp	letion	of the o	ourse,	studen	ts will	be able	to:					
CO Nos.				C	Course	Outcor	nes					evise		el (Baso loom's omy)	ed on
C01	gr	ecognise eener anufactu	world,	and	enviror	nmenta	-						К2		
CO2	in	ecognise indiffer r compli	ent ma	ijor cou	untries	aroun	d the v		-				K2		
CO3		oply the elected c	-	-	-	actices	of gr	een e	lectron	ics in			K2		
CO4		escribe nvironme	•			•				of the			K2		
CO5	de	ealize th esign, si ectronic	upply	chain,				-					K2		
CORR	ELAT	ION OF (COs WI	TH POs		SOs									
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	РО	12	PSO1	PSO2
CO1	Н	L										l	L	М	
CO2	Н	L										l	L	М	
CO3	Н	L	L								L	l	L	М	L
CO 4	Н	L										l	L	М	
CO5	Н	L	L								L	l	L	М	L

UNIT I		9
-	INTRODUCTION OF GREEN ELECTRONICS	
regulations in Ch (RoHs) – Waste	oncerns of the modern society – Overview of electronics indust nina, European Union and other key countries. Restriction of H Electrical and electronic equipment (WEEE) – Energy using Jation, Authorization and Restriction of Chemical substances (REA	lazardous substance Product (EUP) and
UNIT II	GREEN ELECTRONICS MATERIALS AND PRODUCTS	9
adhesives, halog polymer based co substances in ele Influence Whiske	green electronic materials and products – Lead (Pb) – free sold en-free substrates and components. Substitution of non-recy omposites with recyclable materials X-Ray Fluorescence (XRF) for ectronic products. Tin Whiskers Growth in Lead-Free Electronic r Growth – Ways to Mitigate Tin Whisker Risk – Use Finite Elemer – Evaluation of Tin Whisker Impact on High-Reliability Application	clable thermosettin identifying hazardou Assemblies – Factor nt Modeling to Asses
UNIT III	GREEN ELECTRONICS ASSEMBLY AND RECYCLING	9
Deterioration of Solders – Therm Prediction Based Assembly proces	Assembly – Soldering Process – Lead-Free Solder Tip and Lead-Free Tin Solder at Low Temperatures – Fatigue Character al Fatigue of Solder Joints, Fatigue Design of Lead-Free – Elect on Field Profile, Fatigue Validation of Lead-Free Circuit – Flip- s – card Assembly, surface mount technology – Management ion, global collaboration and product disassemble technology.	erization of LeadFree tronics – Fatigue Life Chip Technology and
UNIT IV	FLIP-CHIP ASSEMBLY AND BONDING FOR LEAD-FREE ELECTRONICS	9
Bonding – Mate Reflow soldering Failure Calculati	oly Process – Placement and Under fill stage-FEM of Die stres rials and Process Variations – Integrating Flip Chip into a Stan Techniques and Analytical Methods – Electro migration Analys ons – Gold-Tin Solder Integrating Vertical-Cavity Surface E its – Design and Processing of Flip-Chip Bonding Structure	idard SMT Lead-Free sis for Mean-Time-to mitting Lasers onto
UNIT V	REAL TIME GREEN ELECTRONIC	9
Lead-Free Electro	nie Desien – Calastian of the Deshare Tune – Culastrate en D	
Electrical Connec Design Solder Ba	onic Design – Selection of the Package Type – Substrate or Di tions from Die to FR4 – Assess Impact of CTE Mismatch on Stre Ils for External Connection to PCB – Thermal Analysis of Flip-Chip es – Drop Test of Flip-Chip Packaging – Wei bull Distribution pata.	ess and Fatigue Life - p Packaging – RLC fo
Electrical Connec Design Solder Ba Flip-Chip Packag Analysis of Test D	tions from Die to FR4 – Assess Impact of CTE Mismatch on Stre Ils for External Connection to PCB – Thermal Analysis of Flip-Chip es – Drop Test of Flip-Chip Packaging – Wei bull Distribution	ess and Fatigue Life - p Packaging – RLC fo
Electrical Connect Design Solder Ba Flip-Chip Packag Analysis of Test D TEXT BOOKS: 1. John X.W	tions from Die to FR4 – Assess Impact of CTE Mismatch on Stre Ils for External Connection to PCB – Thermal Analysis of Flip-Chip es – Drop Test of Flip-Chip Packaging – Wei bull Distribution pata. Gang 'Green Electronics Manufacturing', CRC Press Indian Prentice is Shina, 'Green Electronics Design and Manufacturing' Mc Graw H	ess and Fatigue Life - p Packaging – RLC fo for Life Testing and TOTAL: 45 PERIOD Hall, 2012
Electrical Connect Design Solder Ba Flip-Chip Packag Analysis of Test D TEXT BOOKS: 1. John X.W 2. Sammy G REFERENCE BOO 1. Lee Gold	tions from Die to FR4 – Assess Impact of CTE Mismatch on Stre Ils for External Connection to PCB – Thermal Analysis of Flip-Chip es – Drop Test of Flip-Chip Packaging – Wei bull Distribution bata. Gang 'Green Electronics Manufacturing', CRC Press Indian Prentice i Shina, 'Green Electronics Design and Manufacturing' Mc Graw H KS: berg, "Green Electronics/Green Bottom Line, Newnes Publications	ess and Fatigue Life o Packaging – RLC fo for Life Testing and TOTAL: 45 PERIOD Hall, 2012 ill 2008.
Electrical Connect Design Solder Ba Flip-Chip Packag Analysis of Test D TEXT BOOKS: 1. John X.W 2. Sammy G REFERENCE BOO	tions from Die to FR4 – Assess Impact of CTE Mismatch on Stre Ils for External Connection to PCB – Thermal Analysis of Flip-Chip es – Drop Test of Flip-Chip Packaging – Wei bull Distribution bata. Gang 'Green Electronics Manufacturing', CRC Press Indian Prentice i Shina, 'Green Electronics Design and Manufacturing' Mc Graw H KS: berg, "Green Electronics/Green Bottom Line, Newnes Publications	ess and Fatigue Life o Packaging – RLC fo for Life Testing an TOTAL: 45 PERIOD Hall, 2012 ill 2008.

10212EE161 AUTOMOTIVE ELECTRONICS 3 0 0	COURSE CODE:	COURSE TITLE:	L	Т	Ρ	С
	10212EE161	AUTOMOTIVE ELECTRONICS	3	0	0	3

COURSE CATEGORY: Programme Elective

PREAMBLE: This subject serves as the prerequisite for many subjects such as basic electrical & electronics engineering, microprocessor & micro controller. It introduces students to cognitive learning in applied electrical & electronics and develops problem solving skills with both theoretical and engineering oriented problems.

PREREQUISITE COURSES: Basic Electronics Engineering and Microprocessor and Microcontrollers

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Learn concepts and develop basic skills necessary to diagnose automotive electrical problems
- Understand starting and charging, lighting systems, advanced automotive electrical systems, to include body electrical accessories, and basic computer control.
- Understand the instructions necessary to take the Automotive Service Excellence examination.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the basic automotive and transmission systems.	К2
CO2	Explain the various functions of the sensors and actuators in the field of automotive applications	К2
CO3	Discuss about the various analog and digital control methods.	К2
CO4	Describe the Electronic control unit design.	К2
CO5	Explain the various interfacing techniques and applications of automotive electronics.	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	М								М	М	Н	
CO2	Н	М	М								М	М	Н	L
CO3	Н	М	М								L	L	Н	L
CO4	Н	М	М									L	Н	L
CO5	Н	М	М									L	Н	L

UNIT I	FUNDAMENTAL OF AUTOMOTIVE ELECTRONICS	9
suppression, el	in automotive electronic engine management system, electro ectromagnetic compatibility, electronic dashboard instrument and warning system.	
UNIT II	SENSOR TECHNOLOGIES IN AUTOMOTIVE	9
vehicle process Instrumentation reduction. ADCs	iples: Operation, topologies and limitations of all sensors cove ng or communications nodes. Interfacing electronics, Operati amplifiers, Comparators. Level shifting, Wave-shaping, Filters. and DACs. Use of Actuators: Types, Working principle, Charact utomotive context of each type	onal amplifier circuits Noise mechanisms and
UNIT III	AUTOMOTIVE CONTROL SYSTEMS	9
control augment traction control Vehicle braking	approach in Automotive: Analog and Digital control methods, so station, Transmission control, System components and Fun- actuator limiting, wind-up, gain scheduling, Adaptive control. Sp fundamentals, Antilock Systems, Variable assist steering and ste- pers, Air conditions.	ctions. Cruise control, pecial Control Schemes
UNIT IV	ELECTRONIC CONTROL UNIT DESIGN	9
of developmen emphasis on Po	f microprocessor, microcontroller and digital signal processor E t within the automotive context). Architecture of 8/16 bit rts, Timer/Counters, Interrupts, Watch-dog Timers, PWM, Me el language programming.	microcontrollers with
UNIT V	AUTOMOTIVE COMMUNICATION SYSTEMS	9
	interface with ECUs: Interfacing techniques and interfaci	ng with VTU R-2015
-	dgets. Relevance of internet protocols, such as TCP/IP for au tandards, such as Bluetooth, IEEE802.11x. Communication pro	itomotive applications
Wireless LANs		itomotive applications.
Wireless LANs applications.	tandards, such as Bluetooth, IEEE802.11x. Communication pro	tomotive applications otocols for automotive TOTAL: 45 PERIODS
Wireless LANs applications. TEXT BOOKS: 1. William Science	tandards, such as Bluetooth, IEEE802.11x. Communication pro- B. B.Ribbens, 'Understanding Automotive Electronics', 6 th E Newness Publication.	tomotive applications otocols for automotive TOTAL: 45 PERIODS
Wireless LANs applications. TEXT BOOKS: 1. William Science 2. Robert	tandards, such as Bluetooth, IEEE802.11x. Communication pro B. B.Ribbens, 'Understanding Automotive Electronics', 6 th E Newness Publication. Bosch, Automotive Electronics Handbook', John Wiley and Sons, 1	tomotive applications otocols for automotive TOTAL: 45 PERIODS
Wireless LANs applications. TEXT BOOKS: 1. William Science 2. Robert REFERENCE BOO	tandards, such as Bluetooth, IEEE802.11x. Communication pro B. B.Ribbens, 'Understanding Automotive Electronics', 6 th E Newness Publication. Bosch, Automotive Electronics Handbook', John Wiley and Sons, 2 DKS:	tomotive applications otocols for automotive TOTAL: 45 PERIODS dition, 2003, Elsevie 2004.
Wireless LANs applications. TEXT BOOKS: 1. William Science 2. Robert REFERENCE BOO 1. James D 2. Terence	tandards, such as Bluetooth, IEEE802.11x. Communication pro B. B.Ribbens, 'Understanding Automotive Electronics', 6 th E Newness Publication. Bosch, Automotive Electronics Handbook', John Wiley and Sons, 1	TOTAL: 45 PERIODS TOTAL: 45 PERIODS Edition, 2003, Elsevier 2004.
Wireless LANs applications. TEXT BOOKS: 1. William Science 2. Robert REFERENCE BOO 1. James D 2. Terence 2004. 3. Allan Bo	tandards, such as Bluetooth, IEEE802.11x. Communication pro B. B.Ribbens, 'Understanding Automotive Electronics', 6 th E Newness Publication. Bosch, Automotive Electronics Handbook', John Wiley and Sons, 2 DKS: Halderman, _'Automotive Electricity and Electronics', PHI Public	TOTAL: 45 PERIODS TOTAL: 45 PERIODS Edition, 2003, Elsevie 2004. Cation 2005. bility (EMC)', Springer
Wireless LANs applications. TEXT BOOKS: 1. William Science 2. Robert REFERENCE BOO 1. James D 2. Terence 2004. 3. Allan Bo Elsevier 4. Behzadl	tandards, such as Bluetooth, IEEE802.11x. Communication pro- B. B.Ribbens, 'Understanding Automotive Electronics', 6 th E Newness Publication. Bosch, Automotive Electronics Handbook', John Wiley and Sons, DKS: Halderman, _'Automotive Electricity and Electronics', PHI Public Rybak, Mark Steffka, 'Automotive Electromagnetic Compatil onnick, 'Automotive Computer Controlled Systems: Diagnostic T Science, 2001. Bazavi, 'Design of Analog CMOS Integrated Circuits' McGraw-Hill,	TOTAL: 45 PERIODS TOTAL: 45 PERIODS dition, 2003, Elsevier 2004. cation 2005. bility (EMC)', Springer Tools and Techniques'
Wireless LANs applications. TEXT BOOKS: 1. William Science 2. Robert REFERENCE BOO 1. James D 2. Terence 2004. 3. Allan Bo Elsevier 4. Behzadl ONLINE RESOU	tandards, such as Bluetooth, IEEE802.11x. Communication pro- B. B.Ribbens, 'Understanding Automotive Electronics', 6 th E Newness Publication. Bosch, Automotive Electronics Handbook', John Wiley and Sons, 2 DKS: Halderman, _'Automotive Electricity and Electronics', PHI Public Rybak, Mark Steffka, 'Automotive Electromagnetic Compatil ennick, 'Automotive Computer Controlled Systems: Diagnostic T Science, 2001. Bazavi, 'Design of Analog CMOS Integrated Circuits' McGraw-Hill, RCES:	TOTAL: 45 PERIODS TOTAL: 45 PERIODS dition, 2003, Elsevier 2004. cation 2005. bility (EMC)', Springer Tools and Techniques'
Wireless LANs applications. TEXT BOOKS: 1. William Science 2. Robert REFERENCE BOO 1. James D 2. Terence 2004. 3. Allan Bo Elsevier 4. Behzadl ONLINE RESOU	tandards, such as Bluetooth, IEEE802.11x. Communication pro- B. B.Ribbens, 'Understanding Automotive Electronics', 6 th E Newness Publication. Bosch, Automotive Electronics Handbook', John Wiley and Sons, DKS: Halderman, _'Automotive Electricity and Electronics', PHI Public Rybak, Mark Steffka, 'Automotive Electromagnetic Compatil onnick, 'Automotive Computer Controlled Systems: Diagnostic T Science, 2001. Bazavi, 'Design of Analog CMOS Integrated Circuits' McGraw-Hill,	TOTAL: 45 PERIODS TOTAL: 45 PERIODS dition, 2003, Elsevie 2004. cation 2005. bility (EMC)', Springer Tools and Techniques'

COURS	E CODE:	COURSE TITLE:		L	т	Р	С
10212	2EE162	VEHICLE ELECTRONICS	-	2	0	2	3
COURSE	CATEGORY	: Programme Elective					
		course, the students will learn about basic electro architecture used to interconnect these modules		s used	l in mo	odern	vehicles
PREREQU	JISITE COU	RSES: Nil					
RELATED	COURSES:	Nil					
COURSE	EDUCATIO	NAL OBJECTIVES:					
The obje	ctives of th	e course are to,					
• l	Jnderstand	the working of basic electronic circuits					
• *	Know the sp	pecifications and applications of different sensors,	actuators a	and sv	vitchir	ıg devi	ces
	•	high level programming languages				0	
		implement numerous automotive electronic syste	ms				
-							
COURSE	OUTCOME	S:					
Upon the	e successful	completion of the course, students will be able to	o:				
со				Ski	ll Leve	el	
Nos.		Course Outcomes	(Based	on Da	ave's T	Taxono	omy)
CO1		various automotive sensors and actuators with rocontrollers			S4		
CO2	-	automotive electronic system for monitoring rformance, infotainment and telematics.			S4		
CO3	Recognize networkin	the appropriate protocols used in vehicle lg.			S2		

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	L	М	Н		Н				Μ			Μ	Н	Н
CO2	L	М	Н		Н				М			М	Н	Н
CO3	L	М	Н		Н				М			М	Н	Н

COURSE CONTENT: THEORY

Introduction to basic electronics – Passive elements, Op-Amp, types of LED and LCD, logic gates, Mux, De-mux, driver circuits, ADC, DAC.

Sensors – Specifications and applications of ABS Sensor, wheel speed sensor, crank shaft position sensor, oxygen sensor, air flow sensor, tyre pressure sensor, engine coolant sensor, temperature sensor, brake fluid sensor, accelerometer, light sensor, Infra-Red, ultrasonic sensor.

Actuators – Specifications and applications of tyre inflator, AC unit compressor, windshield wiper, heating coil, lighting systems, airbag system, motors, valve.

Switching Devices – Specifications and applications of relays and switches – dip switch, push buttons, touch switch, toggle switch.

Automotive Electronic Systems – Antilock Braking System, Automatic Emergency Braking System, Engine Control System, Ignition Control and Start-Stop System, Heating and AC System, Vehicle Theft Security

System, Seat belt indication system, Camera and Ultrasonic sensor based Parking Assistance System, Vehicle navigation system, Vehicle telematics system.

High Level Programming – Features of Arduino and Raspberry Pi Boards, Basics of Embedded C and Python programming, programming using IDE – Arduino, MATLAB.

Networking – OSI layers, Bus architecture, LAN/WAN, CAN Protocol, FlexRay Protocol, Ethernet Protocol, AUTOSAR architecture

TOTAL: 30 HOURS

LIST OF EXPERIMENTS (15 HOURS)

- 1. LED and Push button interface using Arduino
- 2. LCD and Push button interface using Raspberry Pi
- 3. Design of turn light indicator system
- 4. Design of speed indication system
- 5. Design of image acquisition system
- 6. Design of stepper motor, servo motor and DC motor control

TEXTBOOKS:

1. Bosch Automotive Electrics and Automotive Electronics: Systems, Components and Hybrid Drive, Robert Bosch GmbH, Springer Vieweg, 2007.

COURSE	CODE:	COURSE TITLE:		L	Т	Р	С
10212E	E163	OPTO ELECTRONIC DEVICES		3	0	0	3
COURSE C	ATEGORY	Programme Elective			•		
	-	ectronic devices provide to learn different ty rated circuits and their applications.	pes of optical e	emissio	on, de	tectior	า and
PREREQUI	SITE COUI	RSES: Nil					
RELATED C	COURSES:	Nil					
COURSE EI	DUCATION	NAL OBJECTIVES:					
The object	ives of the	e course are to,					
• Un	nderstand	the fundamentals of optoelectronics					
• Kn	ow differe	ent types of display devices and laser technol	ogy				
• Kn	ow about	the importance of photo detectors in commu	unication syster	n			
• Un	nderstand	functioning of various modulation circuits an	d switching dev	/ices			
• Stu	udy differe	ent optoelectronic integrated circuits and the	ir applications.				
COURSE O	UTCOME	5:					
		completion of the course, students will be at	ole to:				
со		Course Outcomes	Knowledge L	evel (E	Based	on rev	vised

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Describe the fundamentals of optoelectronics	К2
CO2	Discuss the different types of display devices and operating principle of laser	К2
CO3	Classify the different types of photo detectors	К2
CO4	Explain about the modulators and switching devices	К2
CO5	Explain the integration methods, materials, OEIC transmitters receivers, guided wave devices and photonic integrated circuits	К2
1		

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	L	Ι			L							L		
CO2	L	М	М	L	М							М	L	
CO3	М	М	L	М										
CO4	L	L	М	М								М		
CO5	М	М	L	L	М				М		М	М		

UNIT I	FUNDAMENTALS OF OPTOELECTRONICS	9
Blackbody Ra	ght, Wave Nature of Light: Polarization – Interference - Diff diation, Units of Light, Generation of Photo electronics, Elements chanical Concept, Energy Bands in Solids, Semiconductors and S	of Solid State Physics
UNIT II	DISPLAY DEVICES AND LASER	9
Injection Lum Plasma Displ	e, Photoluminescence Cathode luminescence, Cathode Ray Tube, inescence, LED: Materials - Commercial LED Materials – Constru- ay, Liquid Crystal Displays, Numeric Displays, Emission and Ab version, Laser losses, Laser Modes: Mode Locking- Active Mode I Applications	uction - Drive circuitry sorption of Radiation
UNIT III	PHOTO DETECTORS	9
Detectors, Ph	ectors - Thermoelectric Detectors - Bolometer - Pneumatic De oton Devices - Photo Emissive Devices - Vacuum Photodiodes - Ph nniques - Photo Conductive Detectors, Detector Performance Parar	oto Multipliers- Photo
UNIT IV	MODULATION AND SWITCHING DEVICES	9
Absorption N	Digital Modulation, Franz- Keldysh and Stark Effect Modulators, Nodulators, Electro-Optic Modulators- Birefringence and Elect Magneto Optic Modulators, Optical switching, and logic devices.	
UNIT V	PHOTONICS & OPTOELECTRONIC INTEGRATED CIRCUITS	9
Processing fo Receiver - Of	Ionolithic Integration, Applications of Optoelectronic Integrated OEICs, Integrated Transmitters and Receivers- Front End Photo Re IC Transmitter, Guided Wave Devices. Photonics, Photonic Inte s in Photonic Integrated Circuits.	eceiver - PIN HBT Phote
		TOTAL: 45 PERIODS
New l 2. J. Wil	Bhattacharya "'Semiconductor Opto Electronic Devices', Prentice Delhi, 2006. Son and J.Haukes, 'Opto Electronics – An Introduction', Prentice Ha	
REFERENCE B		2005
 Jaspri Interr 	upta, 'Opto Electronic Devices and Systems', Prentice Hall of India, t Singh, 'Opto Electronics – As Introduction to Materials and Device national Edition, 1998	es', Mc Graw-Hill
3. B.E.	A. Saleh and M. C. Teich, 'Fundamentals of Photonics', John Wile). sh, 'Semiconductor Optoelectronics: Physics and Technology', McG	
2007) 4. J. Sing	, ,	,
4. J. Sing ONLINE RESO	URCES:	
4. J. Sing ONLINE RESO 1. https	· · · · · · · · · · · · · · · · · · ·	

COLIE	RSE CO					COUR	SE TITL	E:			L	Т	Ρ	С
	12EE16		E	LECTRO	ONICS (CIRCUI	t simu	LATION	N AND	РСВ	1	•	4	2
102.	12221	54				DE	SIGN				1	0	4	3
COURS	E CATE	GORY:	Progra	mme E	lective									
process	s for b ts to u	etter ur ndersta	ndersta nd how	nding a v to de	nd des sign a l	signing PCB lay	of cost	t effect	ive Pri	nted Ciro	electron cuit Boar ailable ci	ds. Em	phasizir	ng the
PREREC	QUISIT	E COUR	SES: Ni	I										
RELATE	D COL	JRSES: A	Analog	Electro	nics, Li	near In	tegrate	ed Circu	uits					
COURS	E EDU	CATION	AL OBJ	ECTIVE	S:									
The obj	jective	s of the	course	are to,	,									
•	Learn	differe	nt circu	iit simu	lation t	tools us	sed for	electro	onic cire	cuit simu	lation.			
•	Unde	rstand o	differen	t PCB l	ayout d	design a	and pao	ckages.						
٠	Unde	rstand I	PCB ma	nufactı	uring te	echnolo	ogy and	lassem	bly					
٠	Desig	n and fa	abricate	e PCB fo	or a giv	en circ	uit.							
• COURS	-			e PCB fo	or a giv	en circ	uit.							
• COURS Upon th	E OUT	COMES	:					will be	e able t	0:				
	E OUT	COMES	:	tion of	the cou	urse, st		will be	e able t	o:	Sk	ill Level		
Upon tl	E OUT	COMES	:	tion of		urse, st		s will be	e able t		Sk sed on D			ny)
Upon th	E OUT he suce Sim	COMES	comple	tion of Cour s	the cou	urse, st comes	udents				-			יאַן)
Upon th CO Nos.	E OUT he succ Sim Elec	COMES cessful o ulate a	: comple ind per Circuit.	tion of Cour s	the cou se Outo	urse, st comes s analy	ysis fo				-	ave's Ta		ny)
Upon th CO Nos.	E OUT he succ Sim Elec Des	COMES cessful o ulate a ctronic (: comple ind per Circuit. CB Layo	tion of Cours rform ut for t	the cou se Outo various	s analy	ysis fo	r the			-	ave's Ta		<u>1y)</u>
Upon th CO Nos. CO1	E OUT he succ Sim Elec Des Fab	COMES cessful o ulate a ctronic (ign a P(ricate tl	: comple ind pe Circuit. CB Layo ne PCB	tion of Cours rform ut for t and ass	the con se Outo various he give	urse, st comes s analy en circu the co	ysis fo	r the			-	ave's Ta S3 S4		<u>1y)</u>
Upon th CO Nos. CO1 CO2 CO3	E OUT he succ Sim Elec Des Fab	COMES cessful o ulate a ctronic (ign a P(ricate tl	: comple ind pe Circuit. CB Layo ne PCB	tion of Cours rform ut for t and ass	the con se Outo various he give	urse, st comes s analy en circu the co	ysis fo	r the			-	ave's Ta S3 S4	axonon	
Upon ti CO Nos. CO1 CO2 CO3 CORRE	E OUT he succ Sim Elec Des Fab	comes cessful o ulate a ctronic (ign a P(ricate tl N OF CC	: comple ind pe Circuit. CB Layo ne PCB os WITH	tion of Cours rform ut for t and ass I POs A	the con se Outo various he give semble	urse, st comes s analy en circu the co Os	ysis fo	r the	given	(Bas	sed on D	ave's Ta S3 S4 S2	axonon	
Upon ti CO Nos. CO1 CO2 CO3 CORREI COS	E OUT he succ Sim Elec Des Fab LATIOI	comes cessful o ulate a ctronic (ign a P(ricate th N OF CC PO2	: comple ind pe Circuit. CB Layo ne PCB os WITH PO3	tion of Cours rform ut for t and ass I POs A	the con se Outo various he give semble ND PSO	urse, st comes s analy en circu the co Os	ysis fo	r the	given	(Bas	sed on D	ave's T a S3 S4 S2 PO12	PSO1	PSO
Upon the control of t	E OUT he succ Sim Elec Des Fab	COMES cessful o ulate a ctronic (ign a P(ricate th N OF CC PO2 M	: comple ind pe Circuit. CB Layo ne PCB os WITH PO3 H	tion of Cours rform ut for t and ass I POs A	the con se Outo various he give semble ND PS H	urse, st comes s analy en circu the co Os	ysis fo	r the	given	(Bas	sed on D	ave's T a S3 S4 S2 PO12 M	PSO1 H	PSO2

Electronics Circuit Simulation

State the features of different circuit simulation tools (Open source or licensed) used for electronic circuit simulation. Different PCB layout design tools (Open source or License) used for PCB layout design. General terms and elements used in circuit simulation software. Assemble electronics circuit using circuit simulation software. Types of Circuit Analysis - Transient Analysis, Bias Point Analysis, Frequency Response.

PCB Layout Design

Terms used: net list file, back annotation, bill of material, foot print, PTH, track width, mil, etc. used in PCB layout design software. Place, route and generate the layout of given circuit using manual or auto routing using PCB layout design software. Raw Materials - Types of PCBs: Single layer - Double layer - Multi layer – Rigid – Flexible - Flex Rigid -High frequency - Aluminium Backed - Track Width Calculation - Layout Design - Back Annotation -Gerber File - NC Drill File - Fab and Assembly Drawings – Legend - Bill of Material. Packaging Trends - Package Classifications - Package Type and Characteristics: Through-Hole Mounting - Surface Mounting - Special Packages- Package Symbols and Codes. Symbols-Reference Designators Values and Attributes-Schematic Design Guidelines-Routing - Nodes – Joints - Design Error Check.

LIST OF	EXPERIMENTS	
S. No	CO Mapping	Practical Exercises
1.	CO1	Getting acquainted with simulation tool
2.	CO1	Design a Variable Power Supply Circuit using LM338/LM317
3.	CO1	Design a Hartley Oscillators Circuit and simulate its response
4.	CO1	Design an Astable Multivibrator Circuit and simulate its response
5.	CO1	Design and simulate response of Active and Passive Filter Circuits
6.	CO2	Getting acquainted with PCB layout tool

TOTAL: 30 HOURS

TEXTBOOKS:

- 1. Make Your Own PCBs with EAGLE: From Schematic Designs to Finished Boards, Simon Monk; McGraw Hill Education (1 July 2014)
- 2. Complete PCB Design Using OrCAD Capture and PCB Editor, Kraig Mitzner Newnes; Pap/Cdr edition (28 May 2009), 2011, ISBN: 978-1-4493- 9357-1

List of Major Equipment/Instrument/Software with Broad Specifications

- 1. Altium Designer (Licensed version)
- 2. Express PCB (Free version)
- 3. Eagle (Free version)
- 4. MultiSim (Student Version)
- 5. UtilBoard (Student Version)

ONLINE RESOURCES:

1. www.techdocs.altium.com/

- 2. <u>www.ni.com</u> (Multisim and Ultiboard Academic version)
- 3. <u>www.cadence.com</u> (Orcade Student version)
- 4. <u>www.youtube.com</u> (PCB Manufacturing Videos)

	SE CODE:			COURSE				F	L	Т	Р	C
1021	2EE165		ME	DICAL ELI	ECTRONI	CS			3	0	0	3
COURSE	CATEGORY	Programme	Elective									
physiolo	gy and the	l electronics need of elect duce the conc	tronics p	rinciple a	nd applic	ations	of equi	pment				
		RSES: Linear i & Instrument	-	d circuits	, Biology	for En	gineers,	Basic E	lectr	onics	Engine	erin
RELATED	O COURSES:	Internet of Th	hings (lo [·]	Г)								
COURSE	EDUCATION	NAL OBJECTIV	/ES:									
The obje	ectives of the	e course are t	0,									
•	Understand	the basic con	cepts of	human a	natomy a	nd phy	ysiology.					
		lassification, ke needle, pa	•••		•	ion of	medical	elect	ronic	equij	pment	s an
		the concept			sducers,	senso	rs and	bio el	ectric	al ma	achine	s lik
•	Learn about	the patient n	nonitorir	ng system	s and me	asurer	nents lik	e pulse	e, blo	od pr	essure	
•	Study about	the types of	shocks li	ke macro	, micro sh	lock ar	nd the co	ncept	of sa	fety a	spects	
COURSE	OUTCOMES	; :										
-	e successful	completion c	of the co	urse, stud	lents will	be abl	e to:					
CO Nos.		Cours	se Outco	mes			Knowle	dge Le Bloom				vised
CO1	Explain th physiology	e basic conc /	epts of	human a	inatomy	and			К2			
CO2	Explain th equipmen	e principles c ts	of differe	ent medio	al electro	onic			К2			
CO3		e concept of ectrical machi		transdu	cers, sen	sors			К2			
CO4	Describe a measurem	about the par ients	tient mo	onitoring	systems	and			К2			
	1				ts in med							

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	L	Ι			L							L		
CO2	L	М	М	L	М							М	L	
CO3	М	М	L	М										
CO4	L	L	М	М								М		
CO5	М	М	L	L	М				М		М	М		

UNIT I	REVIEW OF ANATOMY AND PHYSIOLOGY	9
	of cell structure, heart and circulatory system, central nervous n, body temperature and reproduction system.	system, muscle action
UNIT II	OVERVIEW OF MEDICAL ELECTRONICS EQUIPMENTS	9
equipment, meth	oplication and specifications of diagnostic, therapeutic a nod of operation of these instruments. Electrodes: bioelectric nterface, contact impedance, types of electrodes, electrodes u	signals, bio electrodes
UNIT III	TRANSDUCERS, SENSORS AND BIOELECTRICAL MACHINES	9
transducer, puls	rom physiological parameters, pressure transducer, flow trans e sensor, respiration sensor, bio medical recorder block di lowing instruments, ECG Machine, EEG Machine, EMG Machine	agram description and
UNIT IV	APPLICATIONS OF BIOMEDICAL INSTRUMENTS	9
	urement, pulse rate measurement, respiration rate measure inciple of defibrillator and pace mark, use of microprocessor in	
UNIT V	SAFETY ASPECTS OF MEDICAL INSTRUMENTS	9
	instrumentation, radiation monitoring instruments, physiologic gross current shock, micro current shock, special design from	
		TOTAL: 45 PERIODS
NewDelh	romwell, "Biomedical instrumentation and measurement", i, 2007. r, R.S., "Handbook of Biomedical Instrumentation", TATA I	
REFERENCE BOO		
Wiley and	Carr and John M. Brown, "Introduction to Biomedical equipn d Sons, New York, 2004. ion to Biomedical Electronics by Edward J. Perkstein; Howard B	
ONLINE RESOUR	•	
2. <u>http://ele</u>	ww.medicalelectronicsdesign.com ectronicsforu.com gineering.careers360.com	

	OURSE	CODE:				COL	URSE TI	TLE:			L	Т	Р	C
	102121	E201			API	PLIED S	OFT CO	OMPUT	ING		2	0	2	3
COURS	E CATI	GORY:	Progra	m Elec	tive									
								•		al Neu PSO, DI		works	(ANNs)	, Fuzzy
PRERE	QUISIT	e couf	RSES: N	il										
COURS	E EDU		IAL OB.	IECTIVE	ES:									
The ob	jective	s of the	course	e are to	,									
•	Unde	rstand	the fuz:	zy logic	operat	tions, r	elation	s and ir	nferenc	e syste	ms			
٠	Unde algori		the arc	hitectu	re, lear	ning m	ethodo	ologies	of perc	eptron	and ba	ack pro	pagatio	n
•	-		of gene	etic and	d differ	ential e	evolutio	on algoi	rithm					
•			-					-		al BEE a	algorith	nm etc		
٠	Study	soft co	mputir	ng tech	niques	applica	ations r	elated	to elec	trical er	ngineer	ring		
COURS	E OUT	COMES	: Upon	the su	ccessfu	l comp	letion	of the c	ourse,	studen	ts will l	be able	to:	
со											Kno	wledge	Level	(Based
														-
Nos.					Course	Outco	mes				ο	n reviso Taxo		m's
Nos.	De							ation in	ı a fuzz	y logic		Тахс	onomy)	m's
	De co	ntrolle	r	fuzzific	ation a	nd def	fuzzifica					Тахс		m's
Nos.	De co Ela	ntrolle aborate	the	fuzzific archite	ation a	nd def of an	fuzzifica	ial ne		y logic etwork		Тахо	onomy)	m's
Nos. CO1 CO2	De co Ela co	ntrolle aborate nsideri	r the ng supe	fuzzific archite ervised	ation a cture and ur	nd def of an superv	fuzzifica artific vised le	ial ne arning	ural n			Тахс	6 00000) K2 K2	m's
Nos.	Ela co Ela co	ntrolle aborate nsideri plain th	r the ng supe	fuzzific archite ervised ept and	ation a octure and ur d steps	of an superv involv	fuzzifica artific vised le	ial ne arning	ural n	etwork		Тахс	nomy) K2	m's
Nos. CO1 CO2	Ela co Ela co Ex dif	ntrolle aborate nsideri plain th fferenti scuss th	the ng supe ne conc al evolu	fuzzific archite ervised ept and ution al	ation a octure and un d steps lgorithr	nd def of an superv involv n optim	fuzzifica artific vised le ed in g	ial ne arning enetic a	ural n algorith	etwork		Тахс	6 00000) K2 K2	m's
Nos. CO1 CO2 CO3	Ela co Ela co Ela co Ex dif Di to	ntrolle aborate nsideri plain th fferenti scuss tl apply f	the ng supe ne conc al evolu ne step for a giv	fuzzific archite ervised ution al s of dif yen opt	ation a octure and un d steps lgorithr fferent imizati	nd def of an superv involv n optim on prol	fuzzifica artific vised le ed in g ization blem	ial ne arning enetic a algorit	ural n algorith hms ar	etwork nm and nd how		Тахс	K2 K2 K2 K2	m's
Nos. CO1 CO2 CO3	Ela co Ela co Ex dif Di to	ntrolle aborate nsideri plain th fferenti scuss tl apply f	the ng supe ne conc al evolu ne step or a giv MATLA	fuzzific archite ervised ution al s of dif yen opt	ation a ecture and ur d steps lgorithr fferent imizati ed sim	nd def of an superv involv n optim on prol	fuzzifica artific vised le ed in g ization blem	ial net arning enetic a algorit els for	ural n algorith hms ar solvinį	etwork nm and		Тахс	K2 K2 K2 K2	m's
Nos. CO1 CO2 CO3 CO4	Ela co Ela co Ex dif Di to De ela	ntrolle aborate nsideri plain th fferenti scuss th apply f	the ng supe ne conc al evolu ne step or a giv MATLA engi	fuzzific archite ervised ution al s of dif ven opt	ation a ecture and ur d steps lgorithr fferent imizati ed sim	nd def of an superv involv n optim on prol ulation	fuzzifica artific vised le ed in g ization blem	ial net arning enetic a algorit els for	ural n algorith hms ar solvinį	etwork nm and nd how g basic		Тахс	K2 K2 K2 K2 K2	m's
Nos. CO1 CO2 CO3 CO4 CO5	Ela co Ela co Ex dif Di to De ele te	ntroller aborate nsideri plain th fferenti scuss th apply f evelop ectrical chnique	the ng supe ne conc al evolu ne step for a giv MATLA engi es	fuzzific archite ervised ution al s of dif ven opt B base neering	ation a ecture and un d steps lgorithr imizati imizati ed sim g pro	nd def of an superv involv n optim on prol ulation blems	fuzzifica artific vised le ed in g ization blem	ial net arning enetic a algorit els for	ural n algorith hms ar solvinį	etwork nm and nd how g basic		Тахс	K2 K2 K2 K2 K2	m's
Nos. CO1 CO2 CO3 CO4	Ela co Ela co Ex dif Di to De ele te	ntroller aborate nsideri plain th fferenti scuss th apply f evelop ectrical chnique	the ng supe ne conc al evolu ne step for a giv MATLA engi es	fuzzific archite ervised ution al s of dif ven opt B base neering	ation a ecture and un d steps lgorithr imizati imizati ed sim g pro	nd def of an superv involv n optim on prol ulation blems	fuzzifica artific vised le ed in g ization blem	ial net arning enetic a algorit els for	ural n algorith hms ar solving	etwork nm and nd how g basic		Тахс	K2 K2 K2 K2 K2 K3	om's
Nos. CO1 CO2 CO3 CO4 CO5 CORRE	Ela co Ela co Ex dif to De ele te LATIOI	ntroller aborate nsideri plain th fferenti scuss th apply f evelop ectrical chnique	the ng supe ne conc al evolu ne step or a giv MATLA engi es Ds WITI	fuzzific archite ervised ution al s of dif ven opt B base neering	ation a ecture and un d steps lgorithr imizati ed sim g pro	nd def of an superv involv n optim on prol ulation blems Os	fuzzifica artific vised le ed in g ization blem n mode using	ial nei arning enetic a algorit els for g soft	ural n algorith hms ar solving	etwork nm and nd how g basic nputing		Taxo	K2 K2 K2 K2 K2 K3	om's
Nos. CO1 CO2 CO3 CO4 CO5 CORRE COS	LATION	ntroller aborate nsideri plain th fferenti scuss th apply f exelop ectrical chnique N OF CC	the ng supe ne conc al evolu ne step or a giv MATLA engi es Ds WITI	fuzzific archite ervised ution al s of dif ven opt B base neering	ation a ecture and un d steps lgorithr imizati ed sim g pro	nd def of an superv involv n optim on prol ulation blems Os	fuzzifica artific vised le ed in g ization blem n mode using	ial nei arning enetic a algorit els for g soft	ural n algorith hms ar solving	etwork nm and nd how g basic nputing		Taxo	<pre>bnomy) K2 K2 K2 K2 K3 PSO1</pre>	PSO2
Nos. CO1 CO2 CO3 CO4 CO5 CORRE CO5 CO1	LATION PO1 H	ntroller aborate nsideri plain th fferenti scuss th apply f exclop ectrical chnique N OF CC PO2 M	the ng supe ne conc al evolu ne step or a giv MATLA engi es Ds WITI PO3 M	fuzzific archite ervised ution al s of dif ven opt B base neering	ation a octure and un d steps lgorithr fferent imizati ed sim g pro	nd def of an superv involv n optim on prol ulation blems Os	fuzzifica artific vised le ed in g ization blem n mode using	ial nei arning enetic a algorit els for g soft	ural n algorith hms ar solving	etwork nm and nd how g basic nputing		Тахс РО12 L	<pre>bnomy) K2 K2 K2 K2 K3 PSO1 M</pre>	PSO2

CO5

Н

Μ

Μ

Μ

Н

Μ

Μ

Μ

L

UNIT	I FUZZY LOGIC	6
	ets- logic operations and relation, fuzzy decisions making, fuzzy inference gic controller.	systems, design of
UNIT	I ARTIFICIAL NEURAL NETWORKS	6
	neuron-Supervised and unsupervised learning-single layer perceptro ron, back propagation neural network.	n, and multi-laye
UNIT I	II EVOLUTIONARY ALGORITHM	6
	algorithms: Introduction-genetic algorithm steps-selection, crossove tial Evolution Algorithm	er, and mutation
UNIT I	V SWARM INTELLIGENCE - I	6
	Swarm Optimization (PSO)-Firefly Algorithm (FA), Artificial Bee Colony of on to Electrical Engineering	ptimization (ABC) -
UNIT I	V SWARM INTELLIGENCE - II	6
Cat Swa	rm Optimization (CSO)-Bacterial Foraging Optimization(BFO), Ant Colony Op	timization (ACO)
		TOTAL: 30 PERIODS
LIST OF	EXPERIMENTS (TOTAL: 30 PERIODS)	
b) c) d) e) f) g) h) i)	Application of fuzzy logic for temperature control in refrigerator Fuzzy logic controller for speed control of stepper motor Emulating logic gates with a neural network Applications of genetic algorithm for speed control of induction motor Application of Particle Swarm Optimization for optimization problem in elect Application of Firefly Algorithm for optimization problems in electrical engine problems. Application of Bacterial Bee Colony optimization in electrical engine problems. Application of Bacterial Foraging Optimization problems in electrical engine problems. Application of Cat Swarm Optimization algorithm in electrical engine problems.	eering ering optimization ering eering optimization
	S.N.Sivanandam and S.N.Deepa, 'Principles of Soft Computing', Wiley India F	Pvt Ltd, 2011.
2.	Jang, J.S.R., Sun, C.T. and Mizutani, E., 'Neuro-fuzzy and Soft Computing Approach to Learning and Machine Intelligence', Prentice Hall, 2009.	
	NCE BOOKS:	
2.	S. Haykin, 'Neural Networks and Learning Machines', Prentice Hall, 2009. S.Rajasekaran, G.A. Vijayalakshmi Pai,'Neural Networks, Fuzzy Logic & Genet New Delhi	tic Algorithms", PHI
3.	Deb, K., 'Optimization for Engineering Design Algorithms and Examples', Pr 2009.	
	George J. Klir, Ute St. Clair, Bo Yuan, 'Fuzzy Set Theory: Foundations and Ar Hall, 1997.	oplications' Prentice

COURSE CODE: 10212EE202

COURSE TITLE: SWITCH MODE POWER SUPPLY DESIGN AND DEVELOPMENT

L	Т	Р	С
2	0	2	3

COURSE CATEGORY: Programme Elective

PREAMBLE: The course is designed as lab dominated theory course to make the student acquire thorough knowledge in the field of power supply design for the given devices or equipments. Since power supply system is absolutely necessary for all equipments which produce constant voltage at the output irrespective of changes in supply voltage. This course is designed from understanding the fundamental of SMPS in designing an SMPS for the given equipments.

PREREQUISITE COURSES: Basic Electronics and Measurement Engineering, Electronic Circuits, and Power Electronics

COURSE EDUCATIONAL OBJECTIVES:

The objectives of this course are to,

- Analyse insight of SMPS and its various topologies
- Design concepts and fabrication of a modern power supply system for the given equipment.

COURSE OUTCOME:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
CO1	Explain the fundamental concept of SMPS.	К2
CO2	Outline the working of rectifier, chopper, amplifier circuit, voltage and current sensors.	К2
CO3	Explain the SMPS topologies.	К2
CO4	Design SMPS for specific application.	К4
CO5	Identify the power quality issues using power quality analyzer.	К3

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	L						L				М	
CO2	Н	Н	М						L		М	L	М	L
CO3	Н	Н	М						L		М	L	М	Н
CO4	Н	Н	Н	М	М				М		М	L	М	Н
CO5	Н	Н	М	L	М				L		М	L	М	н

	IT I INTRODUCTION	6
	luction to SMPS-types-evolution- need of SMPS- Linear Regulator tages-Applications	vs SMPS – Block diagram
UNIT	T II COMPONENTS USED IN SMPS	6
regulat	ier types and its operations-purpose of amplifier in SMPS-amplifier c ator and its types-comparator and its types- importance of comparator f chopper in SMPS	-
UNIT	T III SMPS CONVERTER TOPOLOGIES	6
Buck, B	Boost, Buck-Boost, Push-Pull, Fly back, Resonant, forward Converter- (Operation.
UNIT	T IV DESIGN OF SMPS	6
	ion of switching devices for SMPS-switching frequency-PWM tech - comparator design- need of voltage and current sensors and types	niques-switching losses-dut
UNIT	T V POWER QUALITY ASSESSMENT	6
harmo	r quality analyzer-block diagram and its working-applications-measure onics at source side of SMPS -UPS output side-measurement of inp r quality issues in load side for single phase and three phase loads	
		TOTAL: 30 PERIOD
ТЕХТ В	BOOKS:	
1	Keith Billings, Taylor Morey, 'Switch Mode Power Supply Handbo	
1.	Education, New York, 2012.	ok', 3 rd Edition, McGraw-Hi
2.	Education, New York, 2012.	
2.	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New	
2. REFERE	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New 7970-0	wnes /Elsevier, ISBN 0-7506
2. REFERE	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New 7970-0 RENCE BOOKS: Abraham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power New York: McGraw-Hill, 1999	wnes /Elsevier, ISBN 0-7506 er Supply Design', 3 rd Editior
2. REFERE 1. 2.	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New 7970-0 RENCE BOOKS: Abraham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power New York: McGraw-Hill, 1999 ON Semiconductor (July 11, 2002), 'SWITCHMODE Power Suppli	wnes /Elsevier, ISBN 0-7506 er Supply Design', 3 rd Edition
2. REFERE 1. 2.	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New 7970-0 RENCE BOOKS: Abraham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power New York: McGraw-Hill, 1999 ON Semiconductor (July 11, 2002), 'SWITCHMODE Power Suppli Design Guide' (PDF). Retrieved 2011-11-17. DF EXPERIMENTS	wnes /Elsevier, ISBN 0-7506 er Supply Design', 3 rd Edition ies—Reference Manual and TOTAL: 30 PERIODS
2. REFERE 1. 2. LIST OF	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New 7970-0 RENCE BOOKS: Abraham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power New York: McGraw-Hill, 1999 ON Semiconductor (July 11, 2002), 'SWITCHMODE Power Suppli Design Guide' (PDF). Retrieved 2011-11-17. DF EXPERIMENTS Identification, testing of components and its terminals used in SMPS	wnes /Elsevier, ISBN 0-7506 er Supply Design', 3 rd Edition ies—Reference Manual and TOTAL: 30 PERIODS
2. REFERE 1. 2. LIST OF 1.	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New 7970-0 RENCE BOOKS: Abraham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power New York: McGraw-Hill, 1999 ON Semiconductor (July 11, 2002), 'SWITCHMODE Power Suppli Design Guide' (PDF). Retrieved 2011-11-17. DF EXPERIMENTS Identification, testing of components and its terminals used in SMPS	wnes /Elsevier, ISBN 0-7506 er Supply Design', 3 rd Edition ies—Reference Manual and TOTAL: 30 PERIODS
2. REFERE 1. 2. LIST OF 1.	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New 7970-0 RENCE BOOKS: Abraham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power New York: McGraw-Hill, 1999 ON Semiconductor (July 11, 2002), 'SWITCHMODE Power Suppli Design Guide' (PDF). Retrieved 2011-11-17. DF EXPERIMENTS Identification, testing of components and its terminals used in SMPS a. Selection of energy storage inductor, output filter capacitor. b. Study the working of various high frequency switching devices	wnes /Elsevier, ISBN 0-7506 er Supply Design', 3 rd Editior ies—Reference Manual an TOTAL: 30 PERIODS
2. REFERE 1. 2. LIST OF 1. 2.	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New 7970-0 RENCE BOOKS: Abraham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power New York: McGraw-Hill, 1999 ON Semiconductor (July 11, 2002), 'SWITCHMODE Power Suppli Design Guide' (PDF). Retrieved 2011-11-17. DF EXPERIMENTS Identification, testing of components and its terminals used in SMPS a. Selection of energy storage inductor, output filter capacitor. b. Study the working of various high frequency switching devices	wnes /Elsevier, ISBN 0-7506 er Supply Design', 3 rd Editior ies—Reference Manual an TOTAL: 30 PERIODS
2. REFERE 1. 2. LIST OF 1. 2.	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New 7970-0 RENCE BOOKS: Abraham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power New York: McGraw-Hill, 1999 ON Semiconductor (July 11, 2002), 'SWITCHMODE Power Supplis Design Guide' (PDF). Retrieved 2011-11-17. DF EXPERIMENTS Identification, testing of components and its terminals used in SMPS a. Selection of energy storage inductor, output filter capacitor. b. Study the working of various high frequency switching devices a. Selection of switches, snubber circuit design b. Study of Magnetic circuits and Transformer	wnes /Elsevier, ISBN 0-7506 er Supply Design', 3 rd Editior ies—Reference Manual an TOTAL: 30 PERIODS
2. REFERE 1. 2. LIST OF 1. 2. 3.	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New 7970-0 RENCE BOOKS: Abraham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power New York: McGraw-Hill, 1999 ON Semiconductor (July 11, 2002), 'SWITCHMODE Power Suppli Design Guide' (PDF). Retrieved 2011-11-17. DF EXPERIMENTS Identification, testing of components and its terminals used in SMPS a. Selection of energy storage inductor, output filter capacitor. b. Study the working of various high frequency switching devices a. Selection of switches, snubber circuit design b. Study of Magnetic circuits and Transformer To Generate Pulse width modulation signal using different circuits	wnes /Elsevier, ISBN 0-7506 er Supply Design', 3 rd Editior ies—Reference Manual an TOTAL: 30 PERIODS
2. REFERE 1. 2. LIST OF 1. 2. 3. 4.	Education, New York, 2012. Maniktala, Sanjaya (2006), 'Switching Power Supplies A to Z', New 7970-0 RENCE BOOKS: Abraham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power New York: McGraw-Hill, 1999 ON Semiconductor (July 11, 2002), 'SWITCHMODE Power Suppli Design Guide' (PDF). Retrieved 2011-11-17. DF EXPERIMENTS Identification, testing of components and its terminals used in SMPS a. Selection of energy storage inductor, output filter capacitor. b. Study the working of various high frequency switching devices a. Selection of switches, snubber circuit design b. Study of Magnetic circuits and Transformer To Generate Pulse width modulation signal using different circuits	wnes /Elsevier, ISBN 0-7506 er Supply Design', 3 rd Editior ies—Reference Manual an TOTAL: 30 PERIODS

- b. Study the working of tiny fly back step down transformer
- 7. Design and testing of a voltage regulator circuit
- 8. Design and testing of simple DC chopper
- 9. Design of non-isolated DC-DC converters in different operating modes
- 10. Microcontrollers selection to use in SMPS circuits
- 11. Study of popular PWM Control IC's (SG 3525,TL 494,MC34060 etc.)
- 12. Study of popular PFC Control ICs MC34062 and UC 3854
- 13. Design of driver circuits
- 14. Design and development of SMPS and measure the input power factor and THD of input voltage and current using a power quality analyzer.
- 15. Troubleshooting of SMPS.

		RSE CO						JRSE TI				L	Т	P
	102	12EE20)3			E	LECTRI	CAL MA	ACHINE	S		2	0	2
OURS	E CATE	GORY:	Progra	mme E	lective	(Applic	able or	nly for l	ateral	Entry s	tudent	s)		
			ourse st Applicat		will get	t expos	e on El	ectrica	DC &	AC mad	chines o	concep	ots, me	thods
			SES: Ba				ering							
RELATE	ED COU	RSES: E	Electrica	al Macł	nine De	sign								
OURS	E EDUC	ATION	AL OBJ	ECTIVE	S:									
he ob	jectives	of the	course	are to	make t	the stud	dents,							
•	To gai	n the k	nowled	lge on t	the con	structio	on and	princip	le of o	peratio	n of DC	gener	ators.	
٠	To and	alyse th	e perfo	ormanc	e chara	cterist	ics of D	C moto	ors.					
•				•	•		•	valent	circuit (of trans	former	rs.		
•			e conce	•										
•	To un motor		id the o	peratio	on and	charac	teristic	s of sin	gle pha	se and	poly pł	hase in	ductio	n
		OMES												
OURS	2001	JUIVILS	•											
				npletio	n of the	e cours	e, stud	ents wi	ll be ab	ole to:				
	on the			-	n of the Course (ents wi	ll be ab	ole to:		revise	Level (d Bloo nomy)	
Սր CO	on the Exp	success	sful con	C	Course (Outcon	nes	ents wi				revise Taxo		
Up CO Nos	on the Exp ger	success plain th nerator	sful con ne con: s	c	course (Outcon	n es iple of		ition o			revise Taxo	d Bloo nomy)	
Up CO Nos.	on the Exp ger Ana Un	success plain th herator	ne cons s ne perfo nd the c	C structio	course (on and se chara	Outcon	nes iple of ics of D	opera	ition o	f DC		revise Taxo ł	d Bloo nomy) (2	
Up CO Nos CO1 CO2	on the Exp ger Ana Un tra	success plain th herator alyse th derstar nsform	ne cons s ne perfo nd the c	C structio prmanc oncept	course (on and e chara t, opera	Outcon	nes iple of ics of D nd equi	opera C moto	ition o	f DC		revise Taxo k	d Bloo nomy) (2 (2	
Up CO Nos CO1 CO2 CO3	on the Exp ger Ana Un tra Exp Un	success plain th herator alyse th derstar plain the derstar	ne cons ne perfo ne perfo ers. e conce	cormanc concept ept of so	course (on and e chara t, opera ynchro on and	Outcon	nes iple of ics of D nd equi nachine	opera C moto	ntion o prs circuit (f DC		revise Taxo k	d Bloo nomy) (2 (2 (2	
Up CO Nos. CO1 CO2 CO3 CO4 CO5	on the Exp ger An Un tra Exp Un and	success plain th herator alyse th derstar plain the derstar derstar	ne cons ne perfo nd the c ers. e conce	c structio prmanc concept opt of s operatio aductio	course (on and e chara t, opera ynchro on and n moto	Dutcon princ acterist ation ar nous m charac	nes iple of ics of D nd equi nachine	opera OC moto valent o	ntion o prs circuit (f DC		revise Taxo k	d Bloo nomy) (2 (2 (2 (2 (2 (2	
Up CO Nos. CO1 CO2 CO3 CO4 CO5	on the Exp ger An Un tra Exp Un and	success plain th herator alyse th derstar plain the derstar derstar	ne cons s ne perfo nd the c ers. e conce nd the c ohase in	c structio prmanc concept opt of s operatio aductio	course (on and e chara t, opera ynchro on and n moto	Dutcon princ acterist ation ar nous m charac	nes iple of ics of D nd equi nachine	opera OC moto valent o	ntion o prs circuit (of DC		revise Taxo k	d Bloo nomy) (2 (2 (2 (2 (2 (2 (2) (2)	m's
Up CO Nos. CO1 CO2 CO3 CO4 CO5 CO7	on the Exp ger Ana tra Exp Un ano LATION	success plain th herator alyse th derstar blain the derstar derstar d poly p	e cons ne cons ne perfo nd the c ers. e conce nd the c ohase in os WITH	concept conce	course (on and e chara t, opera ynchro on and n moto	Outcon princ acterist ation ar nous m charac ors. Os	nes iple of ics of D nd equi nachine teristic	opera OC moto valent s. s of sin	ors circuit o gle pha	of DC	on	revise Taxo k	d Bloo nomy) (2 (2 (2 (2 (2 (2 (2) (2)	m's
Up CO Nos. CO1 CO2 CO3 CO4 CO5 CO5 CO5	en the Exp ger Ana Un tra Exp Un and LATION	olain therator alyse the derstar olain the derstar derstar derstar dorstar dorstar dorstar	e cons ne perfo nd the c ers. e conce nd the c ohase in Ds WITH	concept conce	course (on and e chara t, opera ynchro on and n moto	Outcon princ acterist ation ar nous m charac ors. Os	nes iple of ics of D nd equi nachine teristic	opera OC moto valent o s. s of sin PO8	ition o ors circuit o gle pha	f DC of se PO10	on	revise Taxo k	d Bloo nomy) (2 (2 (2 (2 (2 (2 (2) (2) (2) (2) (2)	m's
Up CO Nos. CO1 CO2 CO3 CO4 CO5 CO5 CO5 CO5 CO5	on the Exp ger Ana Un tra Exp Un and LATION H	olain therator alyse the derstar olain the derstar derstar derstar dorstar derstar dorstar derstar derstar derstar derstar derstar	e cons ne perfo nd the c ers. e conce nd the c ohase in Ds WITH PO3 M	concept ormanc concept operation duction I POS A PO4	course (on and e chara t, opera ynchro on and n moto	Outcon princ acterist ation ar nous m charac ors. Os	nes iple of ics of D nd equi nachine teristic	PO8	ition o ors circuit o gle pha PO9 M	f DC of se PO10 L	on	revise Taxo k	d Bloo nomy) (2 (2 (2 (2 (2 (2 (2 (2) (2) (2) (2) (m's PSO M
Up CO Nos. CO1 CO2 CO3 CO4 CO5 CO5 CO5 CO5 CO1 CO2	en the Exp ger And Un tra Exp Un and LATION PO1 H H	olain therator alyse the derstar olain the derstar derstar derstar dolain the derstar d poly p I OF CC PO2 H H	e cons ne perfo ne perfo ers. e conce nd the c phase in Ds WITH PO3 M M	concept operation operatio	course (on and e chara t, opera ynchro on and n moto	Outcon princ acterist ation ar nous m charac ors. Os	nes iple of ics of D nd equi nachine teristic	PO8	rtion o ors circuit o gle pha PO9 M M	f DC of se PO10 L L	on	revise Taxo k	d Bloo nomy) (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	PSO M M

UNIT I	DC GENERATORS	6
	and Principle, Methods of excitation, Magnetization and operating o types, EMF equation - armature Reaction– Commutation – Method	
UNIT II	DC MOTORS	6
-	peration – Back EMF and torque equation – Characteristics and applicatio ad motors – starting of DC motors – Types of starters, Losses and efficiency	
UNIT III	TRANSFORMERS	6
	peration, EMF equation, Phasor diagram, equivalent circuit, open and sl estimation, Parallel operation, three phase transformer connections. Auto	
UNIT IV	SYNCHRONOUS MACHINES	6
	types and constructional features - EMF equation, Concept of synchro EMF and MMF methods, Synchronous motor starting and V curves.	onous reactance
UNIT V	INDUCTION MACHINES	6
control.	duction motors - types and constructional features - equivalent circuit - st induction motors -types and constructional features-principle of o	
	d theory. Applications of induction motors.	
	то	TAL: 30 PERIODS
	RIMENTS (30 PERIODS)	
	circuit and load characteristics of D.C self-excited shunt generator	
1. Oper	characteristics of D.C shunt motor	
1. Oper 2. Load	characteristics of D.C shunt motor	
 Oper Load Spee 		
 Oper Load Spee Oper 	d control of D.C shunt motor	
 Oper Load Spee Oper Load 	d control of D.C shunt motor circuit and short circuit tests on single phase Transformer	F methods
 Oper Load Spee Oper Load Dete 	d control of D.C shunt motor circuit and short circuit tests on single phase Transformer test on single phase transformer	F methods
 Oper Load Spee Oper Load Dete V and 	d control of D.C shunt motor circuit and short circuit tests on single phase Transformer test on single phase transformer rmination of voltage Regulation of three phase alternator by EMF and MM	F methods
 Oper Load Spee Oper Load Dete V and Load 	d control of D.C shunt motor circuit and short circuit tests on single phase Transformer test on single phase transformer rmination of voltage Regulation of three phase alternator by EMF and MM I inverted V curves of Three Phase Synchronous Motor	F methods

TEXT BOOKS:

- 1. Dr. P.S. Bhimbra, 'Electrical Machinery', Khanna Publications, 7th Edition, 2007.
- 2. Nagrath, I.J.and Kothari, D.P., 'Electrical Machines', Tata McGraw Hill Education Private Limited Publishing Company Ltd., 4th Edition, 2010.

REFERENCE BOOKS:

- 1. Arthur Eugene Fitzgerald and Charles Kingsley, 'Electric Machinery', Tata McGraw Hill Education Publications, 6th Edition, 2002.
- 2. Vincent Del Toro, 'Electrical Engineering Fundamentals', 2nd Edition, Prentice hall Publications, 2003.
- 3. Parkar Smith, N.N., 'Problems in Electrical Engineering', 9th Edition, CBS Publishers and Distributers, 1984.
- 4. https://elearn.nptel.ac.in/shop/nptel/electrical-machines/

С	OUR	SE CODE:				COU	RSE TIT	LE:			L T P				
	1021	2EE301		v	OLTAG	E STAB	ILIZER	FABRIC	ATION		0	0	2	1	
OURS	E CA	TEGORY:	Progra	mme E	lective										
ouse	hold	This cou applian designin	ces. Th	nis cou	rse is	design	ed fro	m und	erstand						
PREREC	QUISI		RSES: Ba	asic Ele	ctronic	s and N	leasur	ement	Engine	ering					
OURS	E ED	UCATION	IAL OB	IECTIVE	S:										
he obj	jectiv	es of this	s course	e are to	,										
•	Proc Proc Tecl	ntify the r cedure to cedure fo hniques f TCOMES	o desigr or the d or trou	n of trar esign o	nsform f relay	er for a driver o	given circuit f	oower or volta	rating o age sta	of volta bilizer	ge stab	ilizer			
Up	on th	e succes	sful cor	npletio	n of th	e cours	e, stud	ents wi	ll be at	ole to:					
CO Nos				Co	ourse C	Outcom	es				Based o	f learni on revis taxono	ed Blo		
CO1	L	Explain t	he basi	ic conce	epts of	voltage	e stabili	zer				K2, S	1		
CO2	2	Build a t	ransfor	mer foi	r voltag	ge stabi	lizer					K3, S	2		
COS	3	Build of	relay dı	river cir	cuit							K3, S	2		
CO4	1	Demons	trate vo	oltage s	tabilize	er for sp	pecific	applica	tion			K3, S	3		
CO5	5	Demons	trate tr	oubles	hooting	g of vol	tage sta	abilizer				K3, S	3		
ORRE	LATIC	ON OF CO	Ds WITI	I POs A	ND PS	Os									
COs	PO	1 PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	
CO1	Н	L										L	Н	L	
CO2	Н	L	L						М	L			L	Н	
CO3	Н	L	L						М	L			L	Н	
CO4	Н	L	М						М	М	М	L	М	Н	
CO5	н	L	М	н					М				н	н	

DESIGN OF VOLTAGE STABILIZER

Introduction-Need of voltage stabilizer-Power rating calculation-Block diagram- complete circuit and its operation -Relay driver circuit design-Comparator Design-Transformer design

LIST OF EXPERIMENTS

- 1. Identification of components and its terminals used in voltage stabilizer.
- 2. Design and development of transformer for given power rating.
- 3. Design and development of comparator circuit for voltage stabilizer.
- 4. Design and development of relay driver circuit used in voltage stabilizer.
- 5. Voltage measurement using voltage sensor.
- 6. Design of amplifier circuit for voltage stabilizer.
- 7. Demonstration and testing of voltage stabilizer for various input voltage.
- 8. Trouble shooting of voltage stabilizer.

TOTAL: 30 PERIODS

TEXT BOOKS:

 M. Lotia 'Modern Voltage Stabilizer Servicing: Introduction, Basic Principle and Repairing', ISBN 10: 8176562831 / ISBN 13: 9788176562836, BPB Publications, 2006.

REFERENCE BOOKS:

 Osama Butt 'Automatic Voltage Stabilizer by Using Pulse Width Modulation', ISBN 10: 365989317X / ISBN 13: 9783659893179, Published by LAP Lambert Academic Publishing, 2016.

OPEN ELECTIVES

.NO.	COURSE CODE	COURSE NAME	L	т	Р	С
	1	LECTURE COURSES				
1.	10213EE101	Neural Network and Fuzzy Logic Control	3	0	0	3
2.	10213EE102	Bio Medical Instrumentation	3	0	0	3
3.	10213EE103	Introduction to Automation	3	0	0	3
4.	10213EE104	Virtual Instrumentation	3	0	0	3
5.	10213EE105	Finite Element Analysis	3	0	0	3
6.	10213EE106	EMI and EMC Techniques	3	0	0	3
7.	10213EE107	Power Supply Quality	3	0	0	3
8.	10213EE108	Led Lighting	3	0	0	3
9.	10213EE109	Transducers and Sensors	3	0	0	3
10.	10213EE110	Signals and Systems	3	0	0	3
11.	10213EE111	Wearable Electronics	3	0	0	3
12.	10213EE112	Embedded System	3	0	0	3
13.	10213EE113	Estimation for Electrical Wiring	3	0	0	3
14.	10213EE114	Renewable Energy Systems	3	0	0	3
15.	10213EE115	Automotive Electrical and Electronics Systems	3	0	0	3
16.	10213EE116	Hybrid Electric Vehicles	3	0	0	3
17.	10213EE117	Introduction to Robotics	3	0	0	3
18.	10213EE118	Standards, Calibration, Testing and Maintenance of Electrical Equipment's	3	0	0	3
19.	10213EE119	Electrical Safety, Operation and Regulations	3	0	0	3
20.	10213EE120	Energy Conservation and Management	3	0	0	3
21.	10213EE121	Electrical Machines	3	0	0	3
22.	10213EE122	Industrial Electrical Systems	3	0	0	3
23.	10213EE123	Computer Aided Analysis of Electrical Apparatus	3	0	0	3
24.	10213EE124	Green Energy Resources	3	0	0	3
25.	10213EE125	Robotics and Automation	3	0	0	3
26.	10213EE126	Wind Energy Technology	3	0	0	3
27.	10213EE127	Electrical Safety and Safety Management	3	0	0	3
		INTEGRATED COURSES				
28.	10213EE201	Switch Mode Power Supply Design and Development	2	0	2	3
		LABORATORY COURSES				
29.	10213EE301	Voltage Stabilizer Fabrication	0	0	2	1

COURSE CODE:	COURSE TITLE:	L	т	Ρ	С
10213EE101	NEURAL NETWORK AND FUZZY LOGIC CONTROL	3	0	0	3

COURSE CATEGORY: Open Elective

PREAMBLE: This course Fuzzy Logic and Neural network require understand the concept of fuzziness involved in various systems and fuzzy set theory and neural network.

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

• To cater the knowledge of Fuzzy Logic and Neural Networks in real time systems

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
C01	Illustrate the concepts of feed forward neural networks	К2
C02	Explain the importance of feedback networks and specify the applications of neuro controller for various applications	К2
C03	Analyze and compare fuzzy set theory with conventional set theory	К3
C04	Explain fuzzy systems and the structure of fuzzy logic controller.	К2
C05	Identify various applications of fuzzy logic control to real time systems.	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	Н	М		L									
CO2	М	Н	М		L									
CO3	М	Н	М		L									
CO4	М	Н	L		L									
CO5	М	Н	L		L								М	М

UNIT I	INTRODUCTION TO NEURAL NETWORKS	9
	 Biological neuron – Artificial neuron – Neuron modeling – L eed forward network – Back propagation – Learning factors. 	earning rules – Single layer -
UNIT II	NEURAL NETWORKS FOR CONTROL	9
Applications	tworks – Hop field networks – Associative memories and A of artificial neural network - Process identification – Neuro dulum problem.	
UNIT III	FUZZY SYSTEMS	9
	s vs Fuzzy sets – Operation in fuzzy sets– NOT, AND and OR – Defuzzification – Fuzzy rules	operators - Fuzzy relations -
UNIT IV	FUZZY LOGIC CONTROL	9
	Fuzzy logic Control - Membership function – Knowledge bas zy system - Introduction to neuro fuzzy controller	se – Decision-making logic -
UNIT V	APPLICATION OF FLC	9
	ontrol – Washing Machine - Inverted pendulum – Image proces sure during anesthesia	ssing – Home heating system
		TOTAL: 45 PERIODS
	:	
TEXT BOOKS		
1. Jace	K M. Zurada, 'Introduction to Artificial Neural Systems', Jaico Potton J. Ross, 'Fuzzy Logic with Engineering Applications', Tata N	-
1. Jace	othy J. Ross, 'Fuzzy Logic with Engineering Applications', Tata N	-
 Jace Timo REFERENCE Laur 	othy J. Ross, 'Fuzzy Logic with Engineering Applications', Tata N	IcGraw Hill, 1997.
1. Jace 2. Timo REFERENCE 1. Laur Educ 2. H.J.	othy J. Ross, 'Fuzzy Logic with Engineering Applications', Tata N BOOKS: ance Fausett, Englewood cliffs, N.J., 'Fundamentals of ration, 1992. Zimmermann, 'Fuzzy Set Theory & its Applications' Allied Public	IcGraw Hill, 1997. Neural Networks', Pearson
1. Jace 2. Time REFERENCE 1. Laur Educ 2. H.J. 3. Sime	othy J. Ross, 'Fuzzy Logic with Engineering Applications', Tata N BOOKS: ance Fausett, Englewood cliffs, N.J., 'Fundamentals of action, 1992.	IcGraw Hill, 1997. Neural Networks', Pearso cation Ltd., 1996.

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10213EE102	BIO MEDICAL INSTRUMENTATION	3	0	0	3
COURSE CATEGORY: Op	en Elective				

PREAMBLE: The course is designed to make the student acquire an adequate knowledge of the physiological systems of the human body and relate them to the parameters that have clinical importance. The fundamental principles of equipment that are actually in use at the present day are introduced.

PREREQUISITE COURSES: Basic Electronics and Measurement Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- To provide an acquaintance of the physiology of the heart, lung, blood circulation and circulation respiration. Methods of different transducers used.
- To introduce the student to the various sensing and measurement devices of electrical origin.
- To provide the latest ideas on devices of non-electrical devices.
- To provide latest knowledge of Pulmonary Measurement & Bio Telemetry.
- To bring out the important and modern methods of imaging techniques.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
C01	To emphasize an acquaintance of the physiology of the heart, blood circulation and circulation respiration and the methods of different transducers used.	К2
C02	To demonstrate student to the various sensing and measurement devices of electrical origin and Instruments for checking safety parameters	К3
C03	To understand the latest ideas on devices of non-electrical devices.	К3
C04	To apply the latest knowledge of Pulmonary Measurement & Bio Telemetry.	К2
C05	To highlight the important and modern methods of imaging techniques and biometric system.	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	L		Н								М		L	М
CO2	М							L			L		L	
CO3			М								М			
CO4			Н					М			М			
CO5			М										L	М

UNIT I	FUNDAMENTALS OF BIOMEDICAL ENGINEERING	9
biomedic mechanic	its structure – Resting and Action Potential – Nervous system – cal system- Cardiovascular systems- Respiratory systems - Biomechan cs of spinal column and limbs- Transducers – selection criteria – ers - Temperature measurements - Fibre optic temperature sensors.	ics of soft tissues - Basi
UNIT II	BIOMEDICAL MEASUREMENT	9
	es –types-Amplifiers - ECG – EEG – EMG – ERG - Electrical safety in me - leakage current-Instruments for checking safety parameters of biome	
UNIT III	NON ELECTRICAL PARAMETERS MEASUREMENT AND DIAGNOSTIC PROCEDURES	9
measure	ment of blood pressure - Cardiac output - Heart rate - Heart sour ments – spirometer – Photo Plethysmography, Body Plethysmograph ood –measurement of blood pCO2, pO2, finger-tip oxymeter - ESR, GSR	y – Blood Gas analysers
UNIT IV		9
Physiolog Biotelem hazards a	gy of respiratory system – Respiratory rate measurement – wire and wi etry – Telemetering multiple information – implanted transmitter and safety techniques.	reless s – causes of electrica
Physiolog Biotelem	gy of respiratory system – Respiratory rate measurement – wire and wi letry – Telemetering multiple information – implanted transmitter	reless
Physiolog Biotelem hazards a UNIT V Ultrasour	gy of respiratory system – Respiratory rate measurement – wire and wi etry – Telemetering multiple information – implanted transmitter and safety techniques.	reless rs – causes of electrica 9
Physiolog Biotelem hazards a UNIT V Ultrasour	gy of respiratory system – Respiratory rate measurement – wire and wi letry – Telemetering multiple information – implanted transmitter and safety techniques. MEDICAL IMAGING SYSTEM nd scanner – Echo cardiography – Coloar Doppler system – CAT and	reless s – causes of electrica 9 CT scan – MRI Imaging -
Physiolog Biotelem hazards a UNIT V Ultrasour	gy of respiratory system – Respiratory rate measurement – wire and wi letry – Telemetering multiple information – implanted transmitter and safety techniques. MEDICAL IMAGING SYSTEM nd scanner – Echo cardiography – Coloar Doppler system – CAT and iogram – LASER Imaging – Endoscope.	reless rs – causes of electrica 9
Physiolog Biotelem hazards a UNIT V Ultrasour Cine angi TEXT BOO 1. L 2. J	gy of respiratory system – Respiratory rate measurement – wire and wi etry – Telemetering multiple information – implanted transmitter and safety techniques. MEDICAL IMAGING SYSTEM nd scanner – Echo cardiography – Coloar Doppler system – CAT and iogram – LASER Imaging – Endoscope. OKS: Leslie Cromwell, 'Biomedical Instrumentation and Measurement', Pre Delhi, 2007. oseph J.carr and John M. Brown, 'Introduction to Biomedical Equip	reless rs – causes of electrica 9 CT scan – MRI Imaging - TOTAL: 45 PERIODS entice Hall of India, Nev
Physiolog Biotelem hazards a UNIT V Ultrasour Cine angi TEXT BOO 1. L 2. J V	gy of respiratory system – Respiratory rate measurement – wire and wi etry – Telemetering multiple information – implanted transmitter and safety techniques. MEDICAL IMAGING SYSTEM nd scanner – Echo cardiography – Coloar Doppler system – CAT and iogram – LASER Imaging – Endoscope. OKS: Leslie Cromwell, 'Biomedical Instrumentation and Measurement', Pre Delhi, 2007.	reless rs – causes of electrica 9 CT scan – MRI Imaging - TOTAL: 45 PERIOD entice Hall of India, Nev
Physiolog Biotelem hazards a UNIT V Ultrasour Cine angi TEXT BOO 1. L 2. J V REFEREN 1. K	gy of respiratory system – Respiratory rate measurement – wire and wi etry – Telemetering multiple information – implanted transmitter and safety techniques. MEDICAL IMAGING SYSTEM nd scanner – Echo cardiography – Coloar Doppler system – CAT and iogram – LASER Imaging – Endoscope. OKS: Leslie Cromwell, 'Biomedical Instrumentation and Measurement', Pre Delhi, 2007. oseph J.carr and John M. Brown, 'Introduction to Biomedical Equip Wileyand Sons, New York, 4 th Edition, 2012	reless rs – causes of electrica 9 CT scan – MRI Imaging - TOTAL: 45 PERIOD entice Hall of India, Nev oment Technology', John
Physiolog Biotelem hazards a UNIT V Ultrasour Cine angi TEXT BOO 1. L 2. J V REFEREN 1. K E 2. J Y	gy of respiratory system – Respiratory rate measurement – wire and wi netry – Telemetering multiple information – implanted transmitter and safety techniques. MEDICAL IMAGING SYSTEM Ind scanner – Echo cardiography – Coloar Doppler system – CAT and iogram – LASER Imaging – Endoscope. OKS: Leslie Cromwell, 'Biomedical Instrumentation and Measurement', Pre Delhi, 2007. oseph J.carr and John M. Brown, 'Introduction to Biomedical Equip Wileyand Sons, New York, 4 th Edition, 2012 ICE BOOKS: Khandpur R.S, 'Handbook of Biomedical Instrumentation', Tata McG	reless rs – causes of electrica 9 CT scan – MRI Imaging - TOTAL: 45 PERIOD entice Hall of India, Nev pment Technology', John Graw-Hill, New Delhi, 2 ⁿ ohn Wiley and Sons, Nev

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10213EE103	INTRODUCTION TO AUTOMATION	3	0	0	3
	on Electivo				

COURSE CATEGORY: Open Elective

PREAMBLE: This course is designed to provide the knowledge on recent trends in automation techniques (Programmable Logic Controllers & Distributed Control Systems deployed in the various core industries and research organization).

PREREQUISITE COURSES: Nil

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- Realize the working, design and need of timers, counters, various memories and their efficient managing techniques.
- Relate the automation techniques to real world engineering applications.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's)
CO1	Illustrate the basics of PLCs	К2
CO2	Design Ladder Diagram by programming the timers and counters.	К3
CO3	Design the PLCs addressing applications and research problems.	КЗ
CO4	Exemplify the basics and design of DCS	К3
CO5	Integrating various components to DCS to execute Automation	К2

							1	r		r				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		L	М	М	М									
CO2		Н	М	Н		Μ		L						
CO3		L	L	М		L		М						L
CO4		L	М	М	М									
CO5	L		L			М								М

COURSE	CONTENT:	
UNIT I	PROGRAMMABLE LOGIC CONTROLLER	9
Evolution	of PLC's – Components of PLC – Advantages over relay logic - PLC pro	gramming languages
UNIT II	PROGRAMING IN PLC	9
Ladder di	agram – Programming timers and counters – Design of PLC.	
UNIT III	APPLICATIONS OF PLC	9
	ns in PLC – Program control instructions, math instructions, sequen – Application of PLC – Case study of bottle filling system	cer instructions – Use o
UNIT IV	DISTRIBUTED CONTROL SYSTEMS (DCS)	9
	a, architecture (centralized, hybrid generalized DCS) Local Control Units, LCU – Process interfacing issues, communication facilities, configura	
UNIT V	INTERFACES IN DCS	9
•	interfaces - Low level and high level operator interfaces – Operat – Low level and high level engineering interfaces – General purpose	
		TOTAL: 45 PERIODS
TEXTBOO	KS:	
1. F	rank Petruzella, 'Programmable Logic Controllers', 3 rd Edition, Tata Mo	cGraw Hill Publications.
2. G	eorge Bolton, 'Programmable Logic Controllers', 5 th Edition, Elsevier I	ndia Publications.
REFEREN	CE BOOKS:	
1. V	/ebb John W, Reis Ronald A 'Programmable Logic Controllers', PHI lea	rning Pvt Ltd.
	ackworth 'Programmable Logic Controllers: Programming Metho	

COU	RSE CODE:	COURSE TITLE:	L	Т	Р	0	
102	13EE104	VIRTUAL INSTRUMENTATION	3	0	0	3	
OURSE C	ATEGORY: Open	Elective				1	
REAMBL	E : To study the o	concept of virtual instrumentation using software la	inguag	ge			
OURSE E	DUCATIONAL O	BJECTIVES:					
ne object	tives of the cours	se are to make the students,					
re		nciples and techniques of windows programming s and database programming through the visual l		-	•		
	DUTCOMES : pon the successf	ul completion of the course, students will be able to):				
		ul completion of the course, students will be able to Course Outcomes	d	Level o lomain revised	(Based	on	
UI CO	pon the successf		d	lomain revised	(Based	on	
Ul CO Nos.	comprehend	Course Outcomes	d	lomain revised	(Based Bloom	on	
CO Nos. CO1	Comprehend Apply Calibra using DAQ. Interface the	Course Outcomes the concept of analog signals in digital domain.	d 1	lomain revised	(Based Bloom K2	on	
CO Nos. CO1 CO2	Comprehend Apply Calibra using DAQ. Interface the appropriate o	Course Outcomes the concept of analog signals in digital domain. tion and Resolution for analog inputs and outputs external instruments to PC by selecting the	d 1	lomain revised	(Based Bloom K2 K3	on	

CORRELATION OF COs WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М													
CO2	М	н	н		Н									
CO3	М	н	н		Н									
CO4	М	L			Н									
CO5	М	н	н		Н									
COURSE CONTENT:														
UNIT I REVIEW OF DIGITAL INSTRUMENTATION										9				
Representation of analog signals in the digital domain – Review of quantization in amplitude and time –														

Representation of analog signals in the digital domain – Review of quantization in amplitude and time – Sample and hold –Sampling theorem – ADC and DAC

UNIT II	FUNDAMENTALS OF VIRTUAL INSTRUMENTATION	9	
Resolution and inputs – Differen	ual instrumentation – PC based data acquisition – Typical on sampling frequency – Multiplexing of analog inputs – Single-en nt strategies for sampling of multi-channel analog inputs – Conce ner-counter and analog outputs on the universal DAQ card	ded and differentia	
UNIT III	CLUSTER OF INSTRUMENTS IN VI SYSTEM	9	
-	xternal instruments to a PC – RS232 – RS 422 – RS 485 – USB s DSI model for serial bus – Introduction to bus protocols of MOD bus		
UNIT IV	GRAPHICAL PROGRAMMING ENVIRONMENT IN VI	9	
	phical programming – Lab-view software – Concept of VIs and sub – Chart – Oscilloscopic types – Loops – Case and sequence structu		
Arrays – Formula	ae nodes – Local and global variables – String and file I/O		
UNIT V	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI	9	
UNIT V Fourier transforr temperature ind		– Simple ulation of a simple	
UNIT V Fourier transforr temperature ind	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI m – Power spectrum – Correlation – Windowing and filtering tools - licator – ON/OFF controller – PID controller – CRO emulation – Simple	– Simple ulation of a simple	
UNIT V Fourier transforr temperature ind second order sys TEXTBOOKS: 1. Gupta, S	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI m – Power spectrum – Correlation – Windowing and filtering tools - licator – ON/OFF controller – PID controller – CRO emulation – Simple	– Simple ulation of a simple TOTAL: 45 PERIODS	
UNIT V Fourier transform temperature ind second order syst TEXTBOOKS: 1. Gupta, S Society of	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI m – Power spectrum – Correlation – Windowing and filtering tools - licator – ON/OFF controller – PID controller – CRO emulation – Simple stem – Generation of HTML page 6. and Gupta, J.P., 'PC Interfacing for Data Acquisition and Process	– Simple ulation of a simple TOTAL: 45 PERIODS Control', Instrument	
UNIT V Fourier transform temperature ind second order syst TEXTBOOKS: 1. Gupta, S Society of	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI m – Power spectrum – Correlation – Windowing and filtering tools - licator – ON/OFF controller – PID controller – CRO emulation – Sime stem – Generation of HTML page 6. and Gupta, J.P., 'PC Interfacing for Data Acquisition and Process of America, 1994. . Gofton, 'Understanding Serial Communications', Sybex Internatio	– Simple ulation of a simple TOTAL: 45 PERIODS Control', Instrument	
UNIT V Fourier transform temperature ind second order syst TEXTBOOKS: 1. Gupta, S Society of 2. Peter W REFERENCE BOO	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI m – Power spectrum – Correlation – Windowing and filtering tools - licator – ON/OFF controller – PID controller – CRO emulation – Sime stem – Generation of HTML page 6. and Gupta, J.P., 'PC Interfacing for Data Acquisition and Process of America, 1994. . Gofton, 'Understanding Serial Communications', Sybex Internatio	– Simple ulation of a simple TOTAL: 45 PERIODS Control', Instrument	
UNIT V Fourier transform temperature ind second order sys TEXTBOOKS: 1. Gupta, S Society of 2. Peter W REFERENCE BOO 1. Robert H 2. Kevin J	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI m – Power spectrum – Correlation – Windowing and filtering tools licator – ON/OFF controller – PID controller – CRO emulation – Simi stem – Generation of HTML page 6. and Gupta, J.P., 'PC Interfacing for Data Acquisition and Process of America, 1994. . Gofton, 'Understanding Serial Communications', Sybex Internation DKS:	– Simple ulation of a simple TOTAL: 45 PERIODS Control', Instrumen nal, 1994.	

-		CODE:	:	COURSE TITLE:									Р	C	
	10213	EE105		FINITE ELEMENT ANALYSIS 3								0	0	3	
COURS	E CATE	GORY:	Open l	Elective	2										
PREAN	IBLE : 1	This cou	urse wil	l explo	re the b	oasic co	oncept	of discr	ete and	d contir	nuous e	lemen	t analys	sis	
COURS	E EDU		IAL OB.	IECTIVE	ES:										
•	To int	roduce	the co	ncept o	of nume	erical a	nalysis	of strue	ctural c	ompon	ents				
COURS		COMES	:												
	Upon	the su	ccessfu	l compl	letion c	of the c	ourse, s	student	s will b	e able	to:				
CO Nos.					Cour		Level of learning domain (Based on revised Bloom's)								
CO	1	Understand the criteria of finite element method									К2				
CO2	2	Explain about the basics of discrete elements								К2					
COS	3		De	scribe about the continuum elements								К2			
CO4	1	Explain abo			out the applications of isoperimetric elements								К2		
COS	O5 Understand the applications to other field problems							К2							
CORRE	LATION	N OF CO	Os WITI	H POs A	AND PS	Os									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	М						L								
CO2			н		Н	L				н					

CO2			Η	Η	L				Н			
CO3	L	Н	Н			Н		Н				
CO4	L	L		М	Μ		М					
CO5	М		Н	Н							М	М

COURSE CONTENT:									
UNIT I	UNIT I INTRODUCTION 9								
Review of basic analysis – Stiffness and Flexibility matrix for simple cases – Governing equation and convergence criteria of finite element method.									
UNIT II	DISCRETE ELEMENTS 9								
Bar, Frame, beam elements – Application to static, dynamic and stability analysis.									
UNIT III CONTINUUM ELEMENTS 9									
Various types of 2-D-elements Application to plane stress, plane strain and axisymmetric problems									

UNI	ΤΙν	ISOPARAMETRIC ELEMENTS	9
Applica	itions to	two and three-dimensional problems	
UNI	Тν	FIELD PROBLEM	9
Applica	itions to	other field problems like heat transfer and fluid flow.	
		I	OTAL: 45 PERIODS
ТЕХТВО	DOKS:		
1.		hi.R. Chandrapatha and Ashok D. Belegundu, 'Introduction to I ering', Prentice Hall India, 3 rd Edition, 2003.	Finite Elements in
2.	Reddy.	J.N. 'An Introduction to Finite Element Method', McGraw-Hill, 2000.	
REFERE	ENCE BO	OKS:	
1.	Krishna	murthy, C.S., 'Finite Element Analysis', Tata McGraw-Hill, 2000.	
2.	Bathe, India, 1	K.J. and Wilson, E.L., 'Numerical Methods in Finite Elements Analysi 985.	is', Prentice Hall of

CO	URSE	CODE:				COL	JRSE TI	TLE:			L	Т	Р	C
10	0213	EE106			EN	11 & EN	IC TEC	HNIQUI	ES		3	0	0	3
COURS	E CA	TEGORY:	Open l	Elective	9									
PREAN	1BLE:	This cou	rse will	enable	e the st	udents	to und	lerstand	d powe	r qualit	y issue:	s in po	wer sys	tems.
COURS	E ED	UCATION	IAL OB.	JECTIVI	ES:									
The ob	jectiv	es of the	course	e are to	make	the stu	dents,							
•	To a	acquire ki	nowled	ge of n	on line	ar load	s.							
•	To a	acquire ki	nowled	ge of d	ifferen	t conve	erter ci	rcuits u	sed in p	power s	systems	i		
•	То у	walk arou	ind the	variou	s applic	cations	and sta	ability a	nalysis	in pow	er syste	ems.		
COURS	E OU	ITCOMES	:											
Up	on th	ne succes	sful cor	npletio	n of th	e cours	se, stuc	lents wi	ill be al	ole to:				
CO Nos					Cour	se Out	comes				c	lomain	of learn (Based d Bloon	d on
CO	1	Underst	and the	e basic	idea be	ehind E	MI and	EMC					K2	
CO	2	Gain kno	owledg	e abou	t groun	iding te	echniqu	ies.					K2	
CO	3	Gain kno	owledg	e on th	e impo	rtance	of shie	lding.					К2	
CO	4	Underst	and the	e conce	epts of	digital	circuit	noise.					К2	
CO	5	Gain kno	owledg	e on in	dustria	l and g	overnn	nent sta	indard	s for EN	11		K2	
CORRE	LATI	ON OF CO	Ds WITI	H POs A	AND PS	Os								
COs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	L	L		L					L					
CO2	L								L		L			
CO3	Н	Н				М	М			н	L			
CO4	Н		М											
CO5	Н	Н		Н					Н					
COURS	E CO	NTENT:												
UNIT	ΓΙ	INTRO	ουττιο	N									ç)
	tibilit	EMI, Con cy (EMC)- es												-
UNIT	. II	METHO	D OF H	IARDEN	NING								ç)

Cabling –capacitive coupling- inductive coupling- shielding to prevent magnetic radiation- shield transfer impedance, Grounding – safety grounds – signal grounds- single point and multipoint ground systems- hybrid grounds- functional ground layout –grounding of cable shields- ground loops-guard shields.

UNIT III	BALANCING, FILTERING AND SHIELDING	9
and far fi	pply decoupling - decoupling filters-amplifier filtering —high frequency filtering elds- shielding effectiveness- absorption and reflection loss, Shielding with ma e gaskets, windows and coatings- grounding of shields.	-
UNIT IV	DIGITAL CIRCUIT NOISE AND LAYOUT	9
digital cir	y versus time domain- analog versus digital circuits- digital logic noise- interna cuit ground noise –power distribution-noise voltage objectives- measuring puts-logic families.	
UNIT V	ELECTROSTATIC DISCHARGE, STANDARDS AND LABORATORY TECHNIQUES	9
EMC, Ind	neration- human body model- static discharges-ED protection in equipment des ustrial and Government standards – FCC requirements – CISPR recommendatio es- Measurement methods for field strength-EMI.	-
	тот	AL: 45 PERIODS
TEXTBOC	KS:	
	enry W.Ott, 'Noise Reduction Techniques in Electronic Systems', John Wiley & ernhard Keiser, 'Principles of Electro-magnetic Compatibility', Artech House, In	
REFEREN	CE BOOKS:	
	ridges, J.E Milleta J. and Ricketts.L.W, 'EMP Radiation and Protective Techniqued Sons, USA 1076	ues', John Wiley

and Sons, USA 1976.2. IEEE National Symposium on 'Electromagnetic Compatibility', IEEE, 445, Hoes Lane, Piscataiway,

NJ 08855.

						,	
COURSE		COURSE TITLE:		L	т	Ρ	С
102138	E107	POWER SUPPLY QUALITY	ľ	3	0	0	3
	FEGORY: Op	en Elective					
		e provides knowledge on need for power supply quality, ffects and solutions.	, facto	rs affe	cting	the p	owe
PRE-REQUIS	ITES : Basic	Electrical Engineering					
COURSE EDI	UCATIONAL	OBJECTIVES:					
Fo impart kr	nowledge or	1					
• Тор	orovide knov	vledge on importance of power supply quality.					
• To e	ducate the	power quality phenomena, sources and its effects.					
• To u	inderstand t	he role of power quality standards and charts.					
• To d	lemonstrate	the types of linear and nonlinear loads.					
• To b	orief about p	ower conditioning devices and monitoring systems.					
COURSE OU	TCOMES:						
Upon the co	mpletion of	the course students will be able to					
CO Nos.		Course Outcomes	(l of le Based loom's	on re	vised	
CO1	Explain the i	importance of Power Quality			К2		
(0)	Describe abo effects	out power quality problems, categories, causes and its			K2		
CO3	Interpret th	e role of power quality standards and charts			К2		
CO4	Demonstrat	e the various types of linear and nonlinear loads			К2		
0.05	Summarize Monitoring	Power Conditioning devices and Power Quality systems.			K2		

Monitoring systems.

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			М										L	
CO2			М										М	L
CO3			М											
CO4	L		Н									Н		
CO5			Н	Н								М	L	L

COURSE CONTENTS		
UNIT I	INTRODUCTION	9
	^r Quality, Definition – Importance of Power Quality, Voltage Q Sources of Power Quality Problems, Economic impacts	uality, Voltage Versus
UNIT II	POWER QUALITY PHENOMENA	9
Variations, Sags, S	r Quality: Transients, Steady State Variations, Short Duration and wells, Interruptions, Voltage Unbalance, Waveform Distortion , Power Frequency Variation. Causes, Effects and Solutions	
UNIT III	STANDARDS AND CHARTS	9
standards, IEC Stan Equipment Manuf	Q standards, Indian Standards, International Power Quality Stand dards, Total harmonics distortion (THD), Power acceptability curve acturers Association (CBEMA) curve, Semiconductor Equip (SEMI) curve, Information Technology Industry Council (ITIC) curve	es: Computer Business ment and Materials
UNIT IV	LINEAR AND NON LINEAR LOADS	9
Supply (UPS), Election	g, Fans, Computer Loads, Switch Mode Power Supplies (SMPS), conic Ballasts, microprocessor based control systems (PCs, PLCs), I comedical devices, Network devices	-
UNIT V	CASE STUDY	9
transforms for PQ a	er Quality Problems using PQ teaching toy software. Introduc nalysis, Overview of Power Conditioning Devices and Mitigating Eq d grounding. Outline of Power Quality Monitoring Systems.	
		TOTAL: 45 PERIODS
TEXTBOOKS:		
-	gan, Mark F. McGranaghan, Surya Santoso and H.WayneBeaty, 'Ele cGraw Hill, 2003.	ectrical Power Systems
2. Math H.J.E Press,2000	ollen, 'Understanding Power Quality Problems-Voltage Sag &	& Interruptions', IEEE
REFERENCE BOOKS		
1. G.T. Heydt,	'Electric Power Quality', 2 nd Edition. Circle Publications, 1994.	
2. Arrillaga, N.	R. Watson, S. Chen, 'Power System Quality Assessment', Wiley, 19	99.
EXTENSIVE READIN	G:	
1 Electric Power Ou	Jality by <u>Surajit Chattopadhyay</u>	
	er.com/engineering/energy+technology/book/978-94-007-0634-7)
2. Power Quality by		
	Electrical Systems by <u>Alexander Kusko</u> , <u>Marc T. Thompson</u>	

τοι	JRSE	CODE:				COL	JRSE TI	TLE:				LT	· P	С
10	213E	E108				LED	LIGHTI	NG			:	3 0	0	3
COURS	E CAT	EGORY:	Open E	lective										
discuss ighting pased	abou of Ll syster	This cour t the sigr ED based n. Lastly ED based	nificanc l syster , the c	e of dr ms are ourse	iver cir discuss	cuits us ed so	ed in L as to p	ED ligh rovide	ting sys knowle	stem. Ti edge in	he cont design	rol stra and a	ategies nalysis	used in of LED
PREREC	QUISI	TE COURS	SES: Nil											
	-	JCATION		-	-									
The obj	ective	es of the	course	are to i	make th	ne stud	ents,							
•		the nee												
•		tandard	-) tacha	alagu							
•		er electro ne the as		•••			0,							
•		itain the		•	•	ting sy	stems							
•		rectifica				ns								
COURS		COMES	:											
Upo	on the	e success	ful com	pletion	of the	course	, stude	nts will	be able	e to:				
CO Nos					Course	Outco	mes					revise	Level (I d Bloor nomy)	
CO1		Explain tl illuminat					ws and	quanti	ties of			K	2	
CO2	2	Explain a	bout LE	ED light	ing, typ	es of li	ghtings					K	2	
CO3	ζ [Discuss a circuits u		-			king of	power	electro	onic		K	3	
CO4		Develop systems a	•	•		trategie	es, build	ding ligł	nting co	ontrol		K	3	
CO5	`	Design ar maintena				ED ligh	ting sys	tem, re	epair,			К	3	
CORREI		N OF CO	s WITH	POs A		s								
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ		Н					М						
CO2		М				М								
CO3	Н		М					М		М				
CO4					М									
		+ +					1			1	1		ł	1

UNIT I		
	LIGHT AND ILLUMINATION	9
Classifica - Light a	bout Light: Electromagnetic Spectrum, Visible Spectrum, Waveleng tion of Radiometry & Photometry - Natural & Artificial Light Sources - Cha nd Vision - Evolution of Lighting Technologies - Merits and Demerits nts used for Measurement of Light Quantities.	aracteristics about Light
UNIT II	LED TECHNOLOGY	9
LED's - E	f a LED - Electrical characteristics - Optical characteristics - Data Sheet in xperimental Procedures for determination of the Characteristics - White ninaire - Solid State Luminaire Standards - Performance Measurements	
UNIT III	POWER ELECTRONICS FOR LED LIGHTING	9
Sepic& F Drivers, I	er Requirements and Regional Standards – Topology Overview - Linear, B ly-back) - Driving options - Discrete based drivers, Linear drivers, Swi mportance of Power Factor Correction (PFC), Single Stage vs 2-Stage Desig rs - PWM IC	tching drivers - AC-DC
UNIT IV	LIGHT POWER & CONTROL	9
lighting c multi-cha systems;	n, harmonics, El from lighting equipment – its measurement & suppression ontrol, protocols for lighting control; Lighting control by computer, simple annel control, stage & entertainment lighting control, architectural & b Centralised vs. distributed system; Status monitoring, fault moni ng, lamp life monitoring system, applications	e multi-channel & large puilding lighting control
UNIT V	LED MANUFACTURING TECHNOLOGY	•
		9
printing, & Repair	undamentals of LED Lamps - Testing Of LED Lamps – SMD PCB Assembly te Pick & place Machines programming & practice, Reflow soldering, Hand Sc Dispensing, Coating, protection Optional ED: LED Packaging process- Diebonding, Wire bonding, Encapsulation etc.	chnology – Screen oldering, SMD REWORK
printing, & Repair, ADVANC	Pick & place Machines programming & practice, Reflow soldering, Hand Sc Dispensing, Coating, protection Optional ED: LED Packaging process- Diebonding, Wire bonding, Encapsulation etc.	chnology – Screen
printing, & Repair, ADVANC TEXTBOO 1. A	Pick & place Machines programming & practice, Reflow soldering, Hand Sc Dispensing, Coating, protection Optional ED: LED Packaging process- Diebonding, Wire bonding, Encapsulation etc.	chnology – Screen oldering, SMD REWORK TOTAL: 45 PERIODS
printing, & Repair, ADVANC TEXTBOC 1. A H 2. C	Pick & place Machines programming & practice, Reflow soldering, Hand Sc Dispensing, Coating, protection Optional ED: LED Packaging process- Diebonding, Wire bonding, Encapsulation etc. DKS: Amar K.Ganguly 'Optoelectronic Devices and Circuits, Theory and Application louse.	chnology – Screen oldering, SMD REWORK TOTAL: 45 PERIODS

COURSE CODE:	COURSE TITLE:	L	т	Ρ	С
10213EE109	TRANSDUCERS AND SENSORS	3	0	0	3

COURSE CATEGORY: Open Elective

PREAMBLE: To enable the students to select and design suitable instruments to meet the requirements of industrial; application and various transducers, sensors used for the measurements of various physical quantities.

PREREQUISITES: Basic Electrical Engineering

COURSE EDUCATIONAL OBJECTIVES:

To impart knowledge on

- To understand the structural and functional principles of sensors and transducers used for various physical and nonelectric quantities.
- To explain the principles of operation of the sensor parameters
- To understand the knowledge about the implementation of sensors and transducers into a control system structure.

COURSE OUTCOMES:

Upon the completion of the course students will be able to

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
CO1	Classify and describe various transducers which are used for measuring various parameter like displacement, temperature etc.	К2
CO2	Understand the static and dynamics characteristics of transducers	К2
CO3	Identify the type of transducers used for various application	К2
CO4	Understand the virtual instrumentation for various data acquisition	К2
CO5	Understand the types sensor used for various applications	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	н	Н	L						L			
CO2	М	L	н	М	L						L			
CO3	Н	L	н	М	L						М			L
CO4	Н	L	н	М	L						М			
CO5	Н	Н	н	М	М						Н			L

	UNIT I	INTRODUCTION	9
errors,	classification of	asurement, generalized scheme for measurement systems of errors, error analysis, statistical methods, sensor, transd juirement of transducers.	
	UNIT II	CHARACTERISTICS OF TRANSDUCERS	9
		dynamic characteristics, mathematical model of transduce cers – response to step, ramp and sinusoidal inputs.	r, zero, first order and
l	UNIT III	RESISTIVE, INDUCTIVE AND CAPACITANCE TRANSDUCERS	9
transd	ucer, Capacitor	n gauge, LVDT, variable reluctance transducers, Proximity t microphone, capacitive thickness Transducers, capacitive s er optic transducer and its application.	
	UNIT IV	DATA ACQUISITION	9
•••	of transducer,	signals, signal conditioning, DAQ hardware, analog inpu	its and outputs, DAC
	re architecture measurement	e, selection and configuration data acquisition device, com system	nponents of computer
based			nponents of computer
based Introd	measurement s UNIT V uction to senso	system	9 S, nano sensors,
based Introd	measurement s UNIT V uction to senso	system SENSORS rs, types of sensor, smart sensors, fiber optic sensors, MEMS	9 S, nano sensors,
based Introd	measurement s UNIT V uction to senso onic Sensors, Th	system SENSORS rs, types of sensor, smart sensors, fiber optic sensors, MEMS	9 S, nano sensors, sensors
based Introdu Ultraso TEXTB	measurement s UNIT V uction to senso onic Sensors, Th OOKS: Sawhney. A.K,	system SENSORS rs, types of sensor, smart sensors, fiber optic sensors, MEMS	9 S, nano sensors, sensors TOTAL: 45 PERIODS
based Introdu Ultrasc TEXTB 1.	measurement s UNIT V uction to senso onic Sensors, Th OOKS: Sawhney. A.K, Edition, Dhang	System SENSORS rs, types of sensor, smart sensors, fiber optic sensors, MEMS hin Film Sensors, Liquid Level Sensors, typical application of s 'A Course in Electrical and Electronics Measurements and	9 S, nano sensors, sensors TOTAL: 45 PERIODS Instrumentation', 18 th
based Introdu Ultrasc TEXTB 1. 2.	measurement s UNIT V uction to senso onic Sensors, Th OOKS: Sawhney. A.K, Edition, Dhang	System SENSORS SENSORS rs, types of sensor, smart sensors, fiber optic sensors, MEMS in Film Sensors, Liquid Level Sensors, typical application of s 'A Course in Electrical and Electronics Measurements and bat Rai & Company Private Limited, 2007.	9 S, nano sensors, sensors TOTAL: 45 PERIODS Instrumentation', 18 ^t
based Introdu Ultrasc 1. 2. REFER	measurement s UNIT V uction to senso onic Sensors, Th OOKS: Sawhney. A.K, Edition, Dhang Renganathan.	System SENSORS rs, types of sensor, smart sensors, fiber optic sensors, MEMS in Film Sensors, Liquid Level Sensors, typical application of s 'A Course in Electrical and Electronics Measurements and bat Rai & Company Private Limited, 2007. S, 'Transducer Engineering', Allied Publishers, Chennai, 2003	9 S, nano sensors, sensors TOTAL: 45 PERIODS Instrumentation', 18 ^t 3.
based Introdu Ultrasc 1. 2. REFER 1.	measurement s UNIT V uction to senso onic Sensors, Th OOKS: Sawhney. A.K, Edition, Dhang Renganathan. ENCE BOOKS: Murthy.D.V.S Doebelin. E.A	System SENSORS SENSORS rs, types of sensor, smart sensors, fiber optic sensors, MEMS in Film Sensors, Liquid Level Sensors, typical application of s 'A Course in Electrical and Electronics Measurements and bat Rai & Company Private Limited, 2007.	9 S, nano sensors, sensors TOTAL: 45 PERIODS Instrumentation', 18 th 3.
based Introdu Ultrasc 1. 2. REFER 1. 2.	measurement s UNIT V uction to senso onic Sensors, Th OOKS: Sawhney. A.K, Edition, Dhang Renganathan. ENCE BOOKS: Murthy.D.V.S Doebelin. E.A 2000.	System SENSORS rs, types of sensor, smart sensors, fiber optic sensors, MEMS in Film Sensors, Liquid Level Sensors, typical application of s 'A Course in Electrical and Electronics Measurements and bat Rai & Company Private Limited, 2007. S, 'Transducer Engineering', Allied Publishers, Chennai, 2003 , 'Transducers and Instrumentation', Prentice Hall of India, 20	9 S, nano sensors, sensors TOTAL: 45 PERIODS Instrumentation', 18 ^t 3.
based Introdu Ultrasc 1. 2. REFER 1. 2.	measurement s UNIT V uction to senso onic Sensors, Th OOKS: Sawhney. A.K, Edition, Dhang Renganathan. ENCE BOOKS: Murthy.D.V.S Doebelin. E.A 2000. Patranabis. D	System SENSORS rs, types of sensor, smart sensors, fiber optic sensors, MEMS in Film Sensors, Liquid Level Sensors, typical application of s 'A Course in Electrical and Electronics Measurements and bat Rai & Company Private Limited, 2007. S, 'Transducer Engineering', Allied Publishers, Chennai, 2003 , 'Transducers and Instrumentation', Prentice Hall of India,20 , 'Measurement Systems – Applications and Desig', Tata M	9 S, nano sensors, sensors TOTAL: 45 PERIODS Instrumentation', 18 ^t 3.

COURSE CODE:	COURSE TITLE:	L	т	Р	С
10213EE110	SIGNALS AND SYSTEMS	3	0	0	3
COURSE CATEGORY: Ope	en Elective				

PREAMBLE: This course becomes the basis of introducing the students to the concept of signals, systems and its types, also the method of handling the signals by various mathematical tools. This course is designed pedagogically and uncovers the concepts of continuous and discrete time signals and the systems.

PREREQUISITE COURSES: Engineering Mathematics

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- Introduce signals (Continuous and discrete), systems (Continuous and discrete), its types and operation on signals.
- Provide an intuitive understanding of the application of Fourier Series, Fourier Transforms (Including DFT) and Z-transforms.
- Show the applications of these mathematical tools in networks.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Classify the various types of signal and systems and operate on the signals(like shifting ,scaling etc)	К2
CO2	Apply Fourier series and Fourier transforms in the analysis of signals	КЗ
CO3	Identify the significance of Laplace Transforms and apply the same to some basic circuits	КЗ
CO4	Understand the concept of sampling	К2
CO5	Apply the Z-Transforms technique to DT signal	К2

CORRE	CORRELATION OF COs WITH POs AND PSOs													
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н													
CO2	Н							Н		М	Н			
CO3	Н			Н				Н		М	Н			
CO4		М	М	L		М		М		М				
CO5										Н				

UNIT I	CLASSIFICATION OF SIGNALS AND SYSTEMS	9
Classificatio	n to Continuous and Discrete Time Signals- Continuous to Discrete to ons of Continuous and Discrete time signal-Introduction to Contir d its Classification- LTI System- Impulse response	
UNIT II	FOURIER SERIES ANALYSIS	9
	n to Fourier Series-Trigonometric Coefficients- Evaluation of Fourier – Discrete time Fourier Series-Application of Fourier Series to netwo	
UNIT III	9	
•	tion of Aperiodic signals- Continuous time Fourier Transform -Discrete Time Fourier Transforms¬-Properties of DTFT-Dualit Pairs	-
UNIT IV	LAPLACE TRANSFORMS	9
	Laplace and Motivation-Region of Convergence - Properties of La nsforms- Application to Circuits	place transforms-Inverse
UNIT V	Z- TRANSFORMS	9
	n-Region of Convergence- Relation Between s and z Plane- Z-transf is to Discrete time systems-	orm Pairs- Application of
		TOTAL: 45 PERIODS
TEXTBOOK	S:	
	B. P. Lathi, 'Principles of Linear Systems and Signals', 2 nd Edition, Oxf In V.Oppenheim, S.Wilsky and S.H.Nawab, 'Signals and Systems', Pea	
REFERENCE	BOOKS:	
	Zeimer, W.H.Tranter and R.D.Fannin, 'Signals & Systems - Co Irson, 2007.	ntinuous and Discrete',
2 1.1	n Alan Stuller, 'An Introduction to Signals and Systems', Thomson, 2	007
2. Jon	IT AIM Stuller, All Introduction to Signals and Systems, morison, 2	007.

COUR	SE CODE:	COURSE TITLE:	L	Т	Р	C	
1021	3EE111	WEARABLE ELECTRONICS	3	0	0	3	
COURSE C	ATEGORY: Op	en Elective		1	1		
		Electronics mainly deals with the fundamentals nd clothing product development	s of ele	ctronic	s and	the	
PREREQU		: Basic Electrical Engineering					
COURSE E	DUCATIONAL	OBJECTIVES :					
• To	o learn about v	vearable technology and different interfacing technology	ologies.				
• To	o understand a	bout electro statically generated nano fibres.					
• To	o describe abo	ut sensing fabric and understand smart fabric for he	alth care	etc.			
• To	o discuss strain	sensor in wearable devices.					
• To	o study the diff	erent applications of wearable technologies.					
COURSE C	OUTCOMES :						
Upon	the successful	completion of the course, students will be able to:					
CO Nos.		Course Outcomes		•	Bloom		
C01		ncept of wearable technology and different nethodologies		K2	• •		
CO2	Discuss abou	t production of Nano fibres		К2			
CO3	Understand a	about sensing fabric, actuating fabrics etc.		К2			

	с <i>,</i> с	
CO4	Discuss about strain sensors used in wearable devices	К2
CO5	Understand about application of wearable technology in different fields	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н				L						L			
CO2	L	Н	L	Н	Н	Н	Н				L			
CO3	Н		Н					М	L	М				
CO4	L							М	М	М				
CO5	L		М		М			Н	М	М				

COURSE CON	TENT:	
UNIT I	INTRODUCTION	9
Introduction- Technologies- Implications	Current and Future Wearable technology -Interfacing Technolo Data Management Technologies-Energy Management Techr	-
UNIT II	ELECTROSTATICALLY GENERATED NANOFIBRES	9
yarns and	Electro spinning process-Background-Controlling the diameter of th fabrics-Electro active nanofibers - Inherently conductive pol tes-Pyrolysis and coating of nanofibres	
UNIT III	ELECTROACTIVE FABRICS AND WEARABLE MAN- MACHINEINTERFACES	9
	Sensing Fabrics – Actuating fabrics- Smart Fabrics for Health care- Sm rt textiles for kinesthetic interfaces.	nart Fabric for motion
UNIT IV	STRAIN SENSORS IN WEARABLE DEVICES	9
	Textile Based Strain Sensors for Wearable Devices-Fabrication of Textile Based Strain Sensors	extile Based Sensors-
UNITV	APPLICATIONS	9
	us Monitoring Software - Design and Development of Flexible Sola Communication apparel, Protection and Safety aspects of using elect	•
	Т	OTAL: 45 PERIODS
TEXTBOOKS:		
1. Xiaom	ning Tao, 'Wearable Electronics and Photonics', CRC Press, 2005	
	is C. Mukhopadhyay, 'Wearable Electronics Sensors: For Safe and Health ational Publishing, 2015	ny Living', Springer

СС	DURSE	CODE:				COU	IRSE TI	ΓLE:			L	L T P C				
	10213EE112					EMBED	DED S	YSTEM			3	0	0	3		
COURSE CATEGORY: Open Elective																
charact	eristic	This Co s and a liarize v	pplicati	ions of	embed				-			-		•		
PREREC	QUISIT	E COUR	RSES: N	il												
COURS	E EDU	CATION	IAL OB.	JECTIVE	ES:											
The obj	ective	s of the	course	e are to	make	the stu	dents,									
•		ach stuo vare an		•			-		pment	of an e	mbedd	ed syst	em, inc	luding		
•		arn and														
•		rstandii gent er	•	•				- pract	ice ind	ustrial	embed	ded sys	tems a	nd		
•		derstar		-		•		ns.								
COURS		COMES	:	·												
		succes		npletio	n of th	e cours	e, stud	ents wi	ill be at	ole to:						
со											I	Knowle	dge Lev	vel		
Nos					Cours	e Outco	omes				-		on revis _			
	E V	kplain t	he def	finition	s com	nonent	s and	require	ements	of th		oom's	Taxono	/my)		
CO1		nbedde			o, com	ponen		equit			2		К2			
CO2		escribe ie Embe	-			ecture	and m	emory	organis	ation c	of		K2			
CO3		evelop mbedde			ng and	comm	unicati	on tecł	nnique	s of th	e		К3			
CO4	E>	kplain f			ing an	d appl	lication	s of t	he Em	bedde	d		К2			
CO5	D	escribe	the de	efinitio	ns, cha	racteris	stics ar	nd issue	es of r	eal tim	e		К2			
CORRE		N OF CC	Ds WITI	H POs A	AND PS	Os										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	М	М	М	Н	М			Н	L	М	М	L				
CO2	М	М	М	Н	М			Н	L	М	М	L				
	М	L	L	н	м			Н		М	м					
CO3					1											
CO3 CO4	М	М	М	Н	М			Н	L	М	М	L	М	М		

UNIT I	INTRODUCTION TO EMBEDDED SYSTEMS	9
	on to Embedded Systems - definitions and constraints; Structures sor Requirements - Device and Device drivers - Examples of embed	-
UNIT II	EMBEDDED PROCESSORS & MEMORY	9
•	rpose Processors - General Purpose Processors - Architectural Iss ectures - Memory - Memory Organization.	ues: ARM, PIC, CISC, RISC
UNIT III	EMBEDDED INTERFACING & COMMUNICATION	9
•	nterfacing - Bus, Protocols & ISA Bus Interfacing - USB Interfac ata Communication - Serial Data Communication - Network C ation.	
UNIT IV	EMBEDDED SYSTEM I/O, TESTING & APPLICATION	9
Application	terrupts – DMA – USB & IrDA - Testing - BIST - Open-loop and Clos n Examples: Washing Machine, Automotive Systems, Auto-foc r, Elevator Control System, ATM System.	• •
UNIT V	REAL TIME EMBEDDED SYSTEM	9
Introduction Structure	REAL TIME EMBEDDED SYSTEM on - Definition & characteristics of real-time systems - Issues and performance measures of a real time system - Classical - Uniprocessor scheduling of IRIS tasks - Mode changes - Fault tole	in real time computing Uniprocessor scheduling
Introduction Structure	on - Definition & characteristics of real-time systems - Issues and performance measures of a real time system - Classical	in real time computing Uniprocessor scheduling trant scheduling.
Introduction Structure	on - Definition & characteristics of real-time systems - Issues and performance measures of a real time system - Classical - Uniprocessor scheduling of IRIS tasks - Mode changes - Fault tole	in real time computing Uniprocessor scheduling
Introduction Structure algorithms TEXT BOO	on - Definition & characteristics of real-time systems - Issues and performance measures of a real time system - Classical - Uniprocessor scheduling of IRIS tasks - Mode changes - Fault tole	in real time computing Uniprocessor scheduling trant scheduling.
Introduction Structure algorithms TEXT BOO 1. Ra	on - Definition & characteristics of real-time systems - Issues and performance measures of a real time system - Classical - Uniprocessor scheduling of IRIS tasks - Mode changes - Fault tole	in real time computing Uniprocessor scheduling grant scheduling. TOTAL: 45 PERIODS
Introduction Structure algorithms TEXT BOO 1. Ra	 And the characteristics of real-time systems - Issues and performance measures of a real time system - Classical - Uniprocessor scheduling of IRIS tasks - Mode changes - Fault tole KS: j Kamal, 'Embedded Systems', Tata McGraw Hill, 1st Edition, 2004. vid Simon, 'An Embedded Software Primer', Addison Wesley, 2000 	in real time computing Uniprocessor scheduling grant scheduling. TOTAL: 45 PERIODS
Introduction Structure algorithms TEXT BOO 1. Ra 2. Da REFERENC	 And the characteristics of real-time systems - Issues and performance measures of a real time system - Classical - Uniprocessor scheduling of IRIS tasks - Mode changes - Fault tole KS: j Kamal, 'Embedded Systems', Tata McGraw Hill, 1st Edition, 2004. vid Simon, 'An Embedded Software Primer', Addison Wesley, 2000 	in real time computing Uniprocessor scheduling grant scheduling. TOTAL: 45 PERIODS
Introduction Structure algorithms TEXT BOOM 1. Ray 2. Da REFERENC 1. R.	on - Definition & characteristics of real-time systems - Issues and performance measures of a real time system - Classical - Uniprocessor scheduling of IRIS tasks - Mode changes - Fault tole KS: j Kamal, 'Embedded Systems', Tata McGraw Hill, 1 st Edition, 2004. vid Simon, 'An Embedded Software Primer', Addison Wesley, 2000 E BOOKS:	in real time computing Uniprocessor scheduling trant scheduling. TOTAL: 45 PERIODS
Introduction Structure algorithms TEXT BOOM 1. Ra 2. Da REFERENC 1. R. 2. Jea 3. T.	 and performance measures of a real time systems - Issues and performance measures of a real time system - Classical - Uniprocessor scheduling of IRIS tasks - Mode changes - Fault tole KS: j Kamal, 'Embedded Systems', Tata McGraw Hill, 1st Edition, 2004. vid Simon, 'An Embedded Software Primer', Addison Wesley, 2000 E BOOKS: Mall, 'Real Time Systems Theory and Practice', Pearson, 2008. 	in real time computing Uniprocessor scheduling trant scheduling. TOTAL: 45 PERIODS

COURSE CODE:	
10213EE113	

COURSE TITLE:

ESTIMATION FOR ELECTRICAL WIRING

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Open Elective

PREAMBLE: To understand the methods/procedure of estimating, tendering/ contracting are desired. Knowledge of IE rules for different types of electrical Installation, their planning considerations equips the students with the capability to plan and prepare different Installation projects.

PREREQUISITE COURSES: Basic Electrical and Electronics Engineering.

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- To learn the symbolic representation of the wiring materials.
- To learn quantity and cost of the material for IE Act.
- To teach specifications of electrical wiring.
- To understand about the different types of wrings
- To understand quantity and cost of the material for a electrical projects.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
C01	Explain the symbolic representation of the wiring materials.	КЗ
C02	Explain, estimate of quantity and cost of the material for the following IE Act.	К2
C03	Describe about the specifications of electrical wiring	К1
C04	Explain about the different types of wrings	К2
C05	Describe the quantity and cost of the material for a electrical project following IE Act.	К1

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	L		Н		М			Н			М			
CO2			L		L			Н			L			
CO3	М		М	L										
CO4			Н		L			L						
CO5	М		М	Н							Н			

UNIT I		â
board with sw and power. Ju	ELECTRICAL SYMBOLS ard with switches (lighting) -Distribution fuse-board with switches vitches (power) -Distribution fuse-board with switches (power) - N unction of conductors-Line Existing - Line Proposed - OH line UG cab 5 amps - Socket outlet with switch 5 amps Socket outlet 15 amps - S	1ain witches for Lighting ble – Fault Line crossing
UNIT II	INDIAN ELECTRICITY RULES	9
consumer's p	age, Rule 30 Service Lines and apparatus on consumer premise remises, Rule 46 Periodical inspections and testing of consume sumer's installation.	
UNIT III	SPECIFICATION OF ELECTRICAL ITEMS	9
- Distribution regulator - Sto UG Cable (LT	in Switches - Sockets - Switch boards - Wall socket - Fuse units - Lar boxes - Miniature Circuit Breaker - Earth Leakage Circuit Breaker - Co brage type Water Heater – Immersion Heater – Wires and Cables (PV and HT) - Copper conductor sizes and rating – Earth wires. Lan mp, Sodium vapour lamp, High Pressure Mercury Vapour lamp	eiling fan - Electronic fan /C, VIR, Weather Proof) - nps: Incandescent lamp,
UNIT IV	SYSTEMS OF INTERNAL WIRING, WIRE SIZE, FUSE, SHOCK, EARTHING, AND TESTING OF INSTALLATION	9
sub-distribution Domestic inst electrical appl	and Joint box system and tree system – Position of switches, cuto on boards. Considerations for selecting wire size – size of conc allation, Service connection, Distributors - Power rating of some	ductors /cable used for
Electric shock	iances Materials used as fuse element – Selection of fuse wire - typ it breaker and fuse – why fuse is not used in the neutral – table – Effects of electric shock – factors influencing the electric shoc – cure of shock - Treatment for electric shock - artificial respiration	pes of fuses – difference e for sizes of fuse wire. ck - Precautions against
Electric shock electric shock	iances Materials used as fuse element – Selection of fuse wire - typ it breaker and fuse – why fuse is not used in the neutral – tabl – Effects of electric shock – factors influencing the electric sho	pes of fuses – difference e for sizes of fuse wire. ck - Precautions against
Electric shock electric shock electricity. UNIT V Conditions and in preparing e of material re machines, Sch	iances Materials used as fuse element – Selection of fuse wire - typ it breaker and fuse – why fuse is not used in the neutral – table – Effects of electric shock – factors influencing the electric shoc – cure of shock - Treatment for electric shock - artificial respirati	pes of fuses – difference e for sizes of fuse wire. ck - Precautions against on - fire hazards due to 9 n – steps to be followed b), Estimate the quantity ver wiring having 4 or 5
Electric shock electric shock electricity. UNIT V Conditions and in preparing e of material re machines, Sch	iances Materials used as fuse element – Selection of fuse wire - typ it breaker and fuse – why fuse is not used in the neutral – table – Effects of electric shock – factors influencing the electric shoc – cure of shock - Treatment for electric shock - artificial respirati DOMESTIC, COMMERCIAL AND INDUSTRIAL INSTALLATION ESTIMATES d Requirements for Domestic, Commercial and Industrial Installation electrical estimate (domestic, industrial and agricultural installation required for Residential single bed room Flat (1BHK).Industrial pow ool building having 3 class rooms, Primary Health Centre having min	pes of fuses – difference e for sizes of fuse wire. ck - Precautions against on - fire hazards due to 9 n – steps to be followed i), Estimate the quantity ver wiring having 4 or 5 nimum 6 rooms, Lighting
Electric shock electric shock electricity. UNIT V Conditions and in preparing e of material re machines, Sch	iances Materials used as fuse element – Selection of fuse wire - typ it breaker and fuse – why fuse is not used in the neutral – table – Effects of electric shock – factors influencing the electric shoc – cure of shock - Treatment for electric shock - artificial respirati DOMESTIC, COMMERCIAL AND INDUSTRIAL INSTALLATION ESTIMATES d Requirements for Domestic, Commercial and Industrial Installation electrical estimate (domestic, industrial and agricultural installation required for Residential single bed room Flat (1BHK).Industrial pow ool building having 3 class rooms, Primary Health Centre having min	pes of fuses – difference e for sizes of fuse wire. ck - Precautions against on - fire hazards due to 9 n – steps to be followed b), Estimate the quantity ver wiring having 4 or 5
Electric shock electric shock electricity. UNIT V Conditions and in preparing e of material re machines, Sch scheme of a p TEXT BOOKS: 1. Gupta	iances Materials used as fuse element – Selection of fuse wire - typ it breaker and fuse – why fuse is not used in the neutral – table – Effects of electric shock – factors influencing the electric shoc – cure of shock - Treatment for electric shock - artificial respiration DOMESTIC, COMMERCIAL AND INDUSTRIAL INSTALLATION ESTIMATES d Requirements for Domestic, Commercial and Industrial Installation required for Residential single bed room Flat (1BHK).Industrial pow ool building having 3 class rooms, Primary Health Centre having min arty hall having minimum 20 twin TL fittings. 'Electrical Estimating and Costing' (PDF).	pes of fuses – difference e for sizes of fuse wire. ck - Precautions against on - fire hazards due to 9 n – steps to be followed i), Estimate the quantity ver wiring having 4 or 5 nimum 6 rooms, Lighting
Electric shock electric shock electricity. UNIT V Conditions and in preparing e of material re machines, Sch scheme of a p TEXT BOOKS: 1. Gupta 2. Dr.S.L	iances Materials used as fuse element – Selection of fuse wire - typ it breaker and fuse – why fuse is not used in the neutral – table – Effects of electric shock – factors influencing the electric shoc – cure of shock - Treatment for electric shock - artificial respiration DOMESTIC, COMMERCIAL AND INDUSTRIAL INSTALLATION ESTIMATES d Requirements for Domestic, Commercial and Industrial Installation required for Residential single bed room Flat (1BHK).Industrial pow ool building having 3 class rooms, Primary Health Centre having min arty hall having minimum 20 twin TL fittings. 'Electrical Estimating and Costing' (PDF). .Uppal 'Electrical Wiring, Estimating & Costing' (PDF).	pes of fuses – difference e for sizes of fuse wire ck - Precautions against on - fire hazards due to 9 n – steps to be followed i), Estimate the quantity ver wiring having 4 or 5 nimum 6 rooms, Lighting
Electric shock electric shock electricity. UNIT V Conditions and in preparing e of material re machines, Sch scheme of a p TEXT BOOKS: 1. Gupta 2. Dr.S.L REFERENCE BO	iances Materials used as fuse element – Selection of fuse wire - typ it breaker and fuse – why fuse is not used in the neutral – table – Effects of electric shock – factors influencing the electric shoc – cure of shock - Treatment for electric shock - artificial respiration DOMESTIC, COMMERCIAL AND INDUSTRIAL INSTALLATION ESTIMATES d Requirements for Domestic, Commercial and Industrial Installation required for Residential single bed room Flat (1BHK).Industrial pow ool building having 3 class rooms, Primary Health Centre having min arty hall having minimum 20 twin TL fittings. 'Electrical Estimating and Costing' (PDF). .Uppal 'Electrical Wiring, Estimating & Costing' (PDF).	pes of fuses – difference e for sizes of fuse wire ck - Precautions against on - fire hazards due to 9 n – steps to be followed i), Estimate the quantity ver wiring having 4 or 5 nimum 6 rooms, Lighting

C	OURS	E CODE:		COURSE TITLE:							L	Т	P (
	10213	BEE114		RENEWABLE ENERGY SYSTEMS							3	0	0 3	
COURS	E CAT	EGORY:	Open E	lective										
echnol	logies	This co and the echnolog	ir integ	gration	into th	ne pow	er grid.							
PREREC	QUISIT		SES: Ba	sic Elec	trical E	ngineer	ring							
OURS	E EDU		AL OBJI	ECTIVE	S:									
he obj		es of the												
•		duce abo												
٠		rt knowl	-					-	.			onsum	ption.	
•	Expla	in about	: energy	/-etticie	ent syst	ems an	d produ	ucts for	variou	s applic	ations.			
		COMES												
Upo	on the	success	ful com	pletior	of the	course	, stude	nts will	be able	e to:				
CO Nos					Course	Outco	mes					ledge l revise Taxor	-	
CO1	1	Explain a	bout R	enewał	ole Ene	rgy reso	ources a	and imp	ortanc	e.		K	2	
CO2	2	Outline t	he pro	cess of	photov	oltaic p	ower g	enerati	on.			K	2	
COS	3	Outline sources.	the pro	ocess c	of pow	er gene	eration	using	wind e	energy		K	2	
CO4	4	Biomass	and bio	ogas pro	oductio	n techr	niques.					К	2	
COS	5	Explain energy, t				•	•	ons of	Geoth	ermal		К	2	
	·										•			
CORRE	LATIO	N OF CO	s WITH	POs A	ND PSC)s								
COs	PO1	DOT	DO 3		PO5	DOC	PO7	D O0	DO O					-
COS	PUI	PO2	PO3	PO4	PU5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

COURSE CONT	ENT:	
UNIT I	INTRODUCTION	9
	use-reserves of energy resources-energy cycle of the earth-env ewable energy resources and their importance.	ironmental aspects of energy

Н

М

Μ

Μ

Μ

L

L

L

L

L

L

CO2

CO3 CO4

CO5

Н

н

L

Н

Н

Н

L

L

UNI	тп	SOLAR ENERGY	9			
heat tr	ansport	s, solar thermal systems and solar ponds, solar thermal central central system, thermal storage systems, photovoltaic energy convertions, solar cell, batteries, satellite solar power systems.	-			
UNI	T III	WIND ENERGY	9			
•	evelopm	vind power, wind turbine operation, site characteristics, horizon nents, small and large machines, magnus effect, design princip				
UNI	ΓΙν	BIOMASS AND BIOGAS	9			
biomas enviror	s resou nmental	systems, biomass production, energy plantation, short rotation ince agro forestry wastes, municipal solid wastes and agro pro- l factors and biomass energy development, combustion, modeling, appliances and latest development, bioconversion: b	rocessing industrial residues pyrolysis, gasification and			
•		micals from biomass and biotechnology.				
process UNI	ses, che T V	OTHER RENEWABLE ENERGY SOURCES	9			
process UNI Geothe applica applica	ses, che TV ermal e tions. I		energy, types, systems and nergy - types, systems and and applications, hydrogen			
process UNI Geothe applica applica techno	ses, che T V ermal e tions. tions. I logies. I	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal e Wave energy - types, systems and applications. Tidal er Magneto Hydrodynamic system (MHD). Fuel cells – types	energy, types, systems and nergy - types, systems and			
process UNI Geothe applica applica techno TEXT B	ses, che T V ermal e tions. I logies. I OOKS:	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal e Wave energy - types, systems and applications. Tidal er Magneto Hydrodynamic system (MHD). Fuel cells – types Micro-hydel systems. Hybrid systems and applications.	energy, types, systems and nergy - types, systems and and applications, hydrogen TOTAL: 45 PERIODS			
process UNI Geothe applica applica techno TEXT B 1.	ses, che T V ermal e tions. I logies. I OOKS: Rai G I Sukhat	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal e Wave energy - types, systems and applications. Tidal er Magneto Hydrodynamic system (MHD). Fuel cells – types	energy, types, systems and nergy - types, systems and and applications, hydrogen TOTAL: 45 PERIODS			
process UNI Geothe applica applica techno TEXT B 1.	ses, che T V ermal e tions. I logies. I OOKS: Rai G I Sukhat McGra	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal e Wave energy - types, systems and applications. Tidal er Magneto Hydrodynamic system (MHD). Fuel cells – types Micro-hydel systems. Hybrid systems and applications. D, 'Non-Conventional Sources of Energy', Khanna Publishers, 20 tme S P and Nayak J K, 'Solar Energy - Principles of Thermal G aw Hill, 2008.	energy, types, systems and nergy - types, systems and and applications, hydrogen TOTAL: 45 PERIODS			
process UNI Geothe applica applica techno TEXT B 1. 2. REFERE	ses, che T V ermal e tions. I logies. I OOKS: Rai G I Sukhat McGra	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal e Wave energy - types, systems and applications. Tidal er Magneto Hydrodynamic system (MHD). Fuel cells – types Micro-hydel systems. Hybrid systems and applications. D, 'Non-Conventional Sources of Energy', Khanna Publishers, 20 tme S P and Nayak J K, 'Solar Energy - Principles of Thermal G aw Hill, 2008.	energy, types, systems and nergy - types, systems and and applications, hydrogen TOTAL: 45 PERIODS 006 Collection and Storage', Tata			
process UNI Geothe applica applica techno TEXT B 1. 2. REFERE 1.	ses, che T V ermal e tions. tions. I logies. I OOKS: Rai G I Sukhat McGra	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal e Wave energy - types, systems and applications. Tidal er Magneto Hydrodynamic system (MHD). Fuel cells – types Micro-hydel systems. Hybrid systems and applications. O, 'Non-Conventional Sources of Energy', Khanna Publishers, 20 tme S P and Nayak J K, 'Solar Energy - Principles of Thermal G aw Hill, 2008. DOKS: ri P, K C Singal and Rakesh Ranjan, 'Renewable Energy Sources	energy, types, systems and nergy - types, systems and and applications, hydrogen TOTAL: 45 PERIODS 006 Collection and Storage', Tata			
process UNI Geothe applica applica techno TEXT B 1. 2. REFERE 1. 2.	ses, che T V ermal e tions. I logies. I OOKS: Rai G I Sukhat McGra Sukhat McGra ENCE BC Kothar PHI PV Bent S Abbasi	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal e Wave energy - types, systems and applications. Tidal er Magneto Hydrodynamic system (MHD). Fuel cells – types Micro-hydel systems. Hybrid systems and applications. D, 'Non-Conventional Sources of Energy', Khanna Publishers, 20 tme S P and Nayak J K, 'Solar Energy - Principles of Thermal G aw Hill, 2008. DOKS: ri P, K C Singal and Rakesh Ranjan, 'Renewable Energy Sources t. Ltd., New Delhi, 2008.	energy, types, systems and nergy - types, systems and and applications, hydrogen TOTAL: 45 PERIODS 006 Collection and Storage', Tata and Emerging Technologies'			

COURSE CODE: 10213EE115

COURSE TITLE: AUTOMOTIVE ELECTRICAL & ELECTRONICS SYSTEMS

L	т	Р	С
3	0	0	3

COURSE CATEGORY: Open Elective

PREAMBLE: The course is aimed at imparting fundamental knowledge about the electrical layout and to understand the various sensors and related control system assembly within an automobile

PREREQUISITE COURSES: Basic Electrical Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- To introduce the basic layout of an automotive electrical system.
- To introduce about the Starting and Charging systems of a vehicle.
- To introduce about the Sensors and Actuators used in an Automobile.
- To introduce about the control systems within a vehicle.
- To introduce about the basic management system within a vehicle.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
C01	Emphasize the basic architecture of Automotive Electrical systems.	К1
C02	Troubleshoot the problems behind the drives employed in a vehicle.	К2
C03	Analyze the different sensor arrangements in a vehicle	К1
C04	Differentiate the various control strategies on a vehicle	К1
C05	Manage an engine and understand it's input parameters for the ECU.	К2

Cos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ							L						
CO2								М			Н			
CO3						L								
CO4								М					М	
CO5						Н					Н		М	

UNIT I	INTRODUCTION TO AUTOMOTIVE ELECTRICAL SYSTEM	9
diagrams	ive Electrical Layout, Automotive component operation, Electrical and symbols On Board Diagnostics, Dash Board instruments, V s and troubleshooting.	-
UNIT II	STARTING & CHARGING SYSTEMS	9
and cons	n at starting, behavior of starter during starting, series motor and its truction of starter motors& driving mechanism, D.C. Generator and Al egulation for Charging, lighting lamps and Fuses.	
UNIT III	AUTOMOTIVE SENSORS	9
Sensor, I	ion, Basic Sensor Arrangement, Types of sensors, Oxygen Sensor, C Engine cooling water Sensor, engine oil pressure sensor, Flow se sensor, Speed and Acceleration sensor, Knock sensor, Torque sensor,	ensor, Temperature and
UNIT IV	AUTOMOTIVE CONTROL SYSTEMS	9
	ive microcontrollers, Engine Control Systems, Transmission Control	•
•	Braking Control System, Traction Control System, Stability Control Sys Steering Control System.	tem, Suspension Contro
•		tem, Suspension Control
System, S UNIT V Engine-Co Control, o	Steering Control System.	9 e, Open & Closed loop
System, S UNIT V Engine-Co Control, o	Steering Control System. ENGINE MANAGEMENT SYSTEM onstruction & stroke Classification-Sensor arrangements in Engine engine cooling and warm up control, acceleration, detonation and idl	9 e, Open & Closed loop
System, S UNIT V Engine-Co Control, o	Steering Control System. ENGINE MANAGEMENT SYSTEM onstruction & stroke Classification-Sensor arrangements in Engine engine cooling and warm up control, acceleration, detonation and idl control engineering.	9 e, Open & Closed loop e speed control, exhaust
System, S UNIT V Engine-Co Control, o emission TEXT BOO 1. V	Steering Control System. ENGINE MANAGEMENT SYSTEM onstruction & stroke Classification-Sensor arrangements in Engine engine cooling and warm up control, acceleration, detonation and idl control engineering.	9 e, Open & Closed loop e speed control, exhaust TOTAL: 45 PERIODS
System, S UNIT V Engine-Co Control, o emission TEXT BOO 1. V 2	Steering Control System. ENGINE MANAGEMENT SYSTEM onstruction & stroke Classification-Sensor arrangements in Engine engine cooling and warm up control, acceleration, detonation and idl control engineering. OKS: Villiam B. Ribbens, Norman P. Mansour 'Understanding Automotion	9 e, Open & Closed loop e speed control, exhaust TOTAL: 45 PERIODS ve Electronics', Elsevier,
System, S UNIT V Engine-Co Control, o emission TEXT BOO 1. V 2 2. P	Steering Control System. ENGINE MANAGEMENT SYSTEM onstruction & stroke Classification-Sensor arrangements in Engine engine cooling and warm up control, acceleration, detonation and idl control engineering. OKS: Villiam B. Ribbens, Norman P. Mansour 'Understanding Automotion 012.	9 e, Open & Closed loop e speed control, exhaust TOTAL: 45 PERIODS ve Electronics', Elsevier
System, S UNIT V Engine-Co Control, o emission TEXT BOO 1. V 2 2. P REFEREN	Engine Management System. ENGINE MANAGEMENT SYSTEM onstruction & stroke Classification-Sensor arrangements in Engine engine cooling and warm up control, acceleration, detonation and idl control engineering. OKS: Villiam B. Ribbens, Norman P. Mansour 'Understanding Automotive 2012. L Kohli 'Automotive Electrical Equipment' Tata McGraw-Hill Education	9 e, Open & Closed loop e speed control, exhaust TOTAL: 45 PERIODS ve Electronics', Elsevier n, 2004.
System, S UNIT V Engine-Co Control, o emission TEXT BOO 1. V 2 2. P REFEREN 1. T	Steering Control System. ENGINE MANAGEMENT SYSTEM onstruction & stroke Classification-Sensor arrangements in Engine engine cooling and warm up control, acceleration, detonation and idl control engineering. DKS: Villiam B. Ribbens, Norman P. Mansour 'Understanding Automotion O12. L Kohli 'Automotive Electrical Equipment' Tata McGraw-Hill Education CE BOOKS:	9 e, Open & Closed loop e speed control, exhaus TOTAL: 45 PERIODS ve Electronics', Elsevier n, 2004.
System, S UNIT V Engine-Co Control, o emission TEXT BOO 1. V 2 2. P REFEREN 1. T 2. R	Steering Control System. ENGINE MANAGEMENT SYSTEM onstruction & stroke Classification-Sensor arrangements in Engine engine cooling and warm up control, acceleration, detonation and idl control engineering. DKS: Villiam B. Ribbens, Norman P. Mansour 'Understanding Automotive O12. P L Kohli 'Automotive Electrical Equipment' Tata McGraw-Hill Education CE BOOKS: Tom Denton 'Automobile Electrical and Electronics Systems', Elsevier, 4	9 e, Open & Closed loop e speed control, exhaus TOTAL: 45 PERIODS ve Electronics', Elsevier n, 2004. 4 th Edition (April 9, 2012)
System, S UNIT V Engine-Co Control, d emission TEXT BOO 1. V 2 2. P REFEREN 1. T 2. R 3. C	Steering Control System. ENGINE MANAGEMENT SYSTEM onstruction & stroke Classification-Sensor arrangements in Engine engine cooling and warm up control, acceleration, detonation and idl control engineering. OKS: Villiam B. Ribbens, Norman P. Mansour 'Understanding Automotive O12. L Kohli 'Automotive Electrical Equipment' Tata McGraw-Hill Education CE BOOKS: Tom Denton 'Automobile Electrical and Electronics Systems', Elsevier, 4 Robert Bosch 'Automotive Handbook' SAE- 2011 Edition I.	9 e, Open & Closed loop e speed control, exhaus TOTAL: 45 PERIODS ve Electronics', Elsevier n, 2004. 4 th Edition (April 9, 2012) nd Vol- 2, 2012.

COURSE CODE:	COURSE TITLE:	L	Т	Р	C
10213EE116	HYBRID ELECTRIC VEHICLES	3	0	0	3

COURSE CATEGORY: Open Elective

PREAMBLE: This course aims in providing the fundamental knowledge on electric and hybrid power trains, introduction to the principle of regenerative braking and environmental advantages of electric & hybrid vehicles.

PREREQUISITE COURSES: Basic Electrical Engineering, Basic Electronics Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- An overview of the vehicle propulsion principle.
- An understanding of the electric vehicles and its powertrains.
- The fundamental knowledge on hybrid electric vehicles.
- An elaborate knowledge on regenerative braking.
- Broad analytical knowledge on advantages of electric vehicles on environment.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
C01	Enumerate the principle of vehicle propulsion and braking	К1
C02	Demonstrate the structure of an electric vehicle	К2
C03	Illustrate the working principle of a Hybrid Electric Vehicle	К2
C04	Identify and solve the problems in regenerative braking	К2
C05	Articulate the effects of electric and hybrid vehicles on environment	К2

CORRELATION OF COS WITH POS AND PSOS

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						L								
CO2								Н						
CO3								Н						
CO4			М			М								
CO5										Н			L	М

COURSE CONTENT:

UNIT I FUNDAMENTALS OF VEHICLE PROPULSION

General Description of Vehicle Movement- Vehicle Resistance- Dynamic Equation- Power Train Tractive Effort and Vehicle Speed- Vehicle Power Plant and Transmission Characteristics- Vehicle Performance-Operating Fuel Economy- Brake Performance

9

UN	IT II	ELECTRIC VEHICLE& PROPULSION SYSTEMS	9
Transm Consur	nission mption-	of EVs- Performance of EVs- Traction Motor Character Requirement- Vehicle Performance- Tractive Effort in Principle of Operation and Performance-DC Motor Drive agnet BLDC Motor Drives-SRM Drives	n Normal Driving- Energy
UNI	IT III	HYBRID ELECTRIC VEHICLES	9
•		HEVs-Series & Parallel HEVs-Advantages & Disadvantages EV-Hybrid Drivetrains-sizing of components-rated vehicle ve	
UNI	ΙΤΙν	REGENERATIVE BRAKING	9
versus Decele	Brakin eration R	y Consumed in Urban Driving- Braking Energy versus Ve g Power- Braking Energy versus Braking Power- Brak ate- Braking Energy on Front and Rear Axles- Brake System System- Fully Controllable Hybrid Brake System	king Energy versus Vehicle
iyonu			
		ELECTRIC VEHICLES & ENVIRONMENT	9
UN Vehicle Alterna	e Polluti ative and	ELECTRIC VEHICLES & ENVIRONMENT on: the Effects- Vehicles Pollution: a Quantitative Analysis- d Sustainable Energy Used via the Grid- Using Sustainable gulations and Law Makers-Case study of rechargeable batter	Vehicle Pollution in Context- Energy with Fueled Vehicles-
UN Vehicle Alterna	e Polluti ative and	ا on: the Effects- Vehicles Pollution: a Quantitative Analysis- d Sustainable Energy Used via the Grid- Using Sustainable	Vehicle Pollution in Context- Energy with Fueled Vehicles- ry vehicles.
UNI Vehicle Alterna The Ro	e Polluti ative and	ا on: the Effects- Vehicles Pollution: a Quantitative Analysis- d Sustainable Energy Used via the Grid- Using Sustainable	Vehicle Pollution in Context- Energy with Fueled Vehicles-
UNI Vehicle Alterna The Ro TEXT B	e Pollutio ative and ole of Rep BOOKS:	ا on: the Effects- Vehicles Pollution: a Quantitative Analysis- d Sustainable Energy Used via the Grid- Using Sustainable	Vehicle Pollution in Context- Energy with Fueled Vehicles- ry vehicles. TOTAL: 45 PERIODS
UNI Vehicle Alterna The Ro TEXT B	e Pollutia ative and ole of Rep BOOKS: Husain	on: the Effects- Vehicles Pollution: a Quantitative Analysis- d Sustainable Energy Used via the Grid- Using Sustainable gulations and Law Makers-Case study of rechargeable batter (1) 'Electric and Hybrid Vehicles: Design Fundamentals', CRC F (ie, James, and John Lowry. 'Electric Vehicle Technology E	Vehicle Pollution in Context- Energy with Fueled Vehicles- ry vehicles. TOTAL: 45 PERIODS Press; 2011.
UNI Vehicle Alterna The Ro TEXT B 1. 2.	e Pollutio ative and ole of Reg BOOKS: Husain Larmin	on: the Effects- Vehicles Pollution: a Quantitative Analysis- d Sustainable Energy Used via the Grid- Using Sustainable gulations and Law Makers-Case study of rechargeable batter I 'Electric and Hybrid Vehicles: Design Fundamentals', CRC F nie, James, and John Lowry. 'Electric Vehicle Technology E 203.	Vehicle Pollution in Context- Energy with Fueled Vehicles- ry vehicles. TOTAL: 45 PERIODS Press; 2011.
UNI Vehicle Alterna The Ro TEXT B 1. 2. REFERI	e Pollutia ative and ole of Reg BOOKS: Husain Larmin Ltd., 20 ENCE BC	on: the Effects- Vehicles Pollution: a Quantitative Analysis- d Sustainable Energy Used via the Grid- Using Sustainable gulations and Law Makers-Case study of rechargeable batter I 'Electric and Hybrid Vehicles: Design Fundamentals', CRC F nie, James, and John Lowry. 'Electric Vehicle Technology E 203.	Vehicle Pollution in Context Energy with Fueled Vehicles ry vehicles. TOTAL: 45 PERIODS Press; 2011. Explained', John Wiley&Sons
UNI Vehicle Alterna The Ro TEXT B 1. 2. REFERI 1.	e Pollutia ative and ole of Rep BOOKS: Husain Larmin Ltd., 20 ENCE BC Ehsani Vehicle	on: the Effects- Vehicles Pollution: a Quantitative Analysis- d Sustainable Energy Used via the Grid- Using Sustainable gulations and Law Makers-Case study of rechargeable batter of t 'Electric and Hybrid Vehicles: Design Fundamentals', CRC F nie, James, and John Lowry. 'Electric Vehicle Technology E 203. DOKS: , Mehrdad, YiminGao, and Ali Emadi 'Modern Electric, H	Vehicle Pollution in Context Energy with Fueled Vehicles ry vehicles. TOTAL: 45 PERIODS Press; 2011. Explained', John Wiley&Sons
UNI Vehicle Alterna The Ro TEXT B 1. 2. REFERI 1.	e Pollution ative and ole of Reg BOOKS: Husain Larmin Ltd., 20 ENCE BC Ehsani Vehicle Emadi,	on: the Effects- Vehicles Pollution: a Quantitative Analysis- d Sustainable Energy Used via the Grid- Using Sustainable gulations and Law Makers-Case study of rechargeable batter of l'Electric and Hybrid Vehicles: Design Fundamentals', CRC F nie, James, and John Lowry. 'Electric Vehicle Technology E 203. DOKS: , Mehrdad, YiminGao, and Ali Emadi 'Modern Electric, H es: Fundamentals, Theory, and Design', CRC Press, 2009.	Vehicle Pollution in Context Energy with Fueled Vehicles ry vehicles. TOTAL: 45 PERIODS Press; 2011. Explained', John Wiley&Sons

COURSE CODE: 10213EE117				COURSE TITLE:						Т	Р	C		
1	L 0213 E	E117			INTR	ODUCT	ION TO	O ROBC	DTICS		3	0	0	3
OURSE	E CATE	GORY:	Open I	Elective	2					I		I	<u> </u>	<u> </u>
PREAM	BLE: TI	his cou	rse will	help tł	ne stud	ents to	study	the bas	ic cond	epts of	roboti	cs and	their de	esign.
PREREC	UISITI	E COUR	RSES: N	il										
OURSE	E EDUC		IAL OB.	IECTIVE	ES:									
he obj	ectives	s of the	course	e are to	make	the stu	dents,							
			•		-		echnol	ogy of	robots	, and th	eir des	ign, ma	nufact	ure,
	applic	ation, a	and stru	uctural	dispos	tion.								
COURSE														
Jpon th	ne succ	cessful	comple	tion of	the co	urse, st	udents	will be	e able t	o:				
CO Nos.				Cou	rse Out	tcomes	;				-	ge Leve oom's	•	
C01	Intr	oductio	on abou	ut basic	compo	onents	and typ	oes of r	obots			K1		
C02	Ana	lysis of	robot	motion	and co	ontrol						K2		
C03	Basi	ic conc	epts of	Artifici	al intel	ligence						K2		
C04	Rob	ot pro	grammi	ing intr	oductio	n						K2		
C05	Арр	licatio	ns of ro	botics								K2		
CORREL		I OF CO	Ds WITH	H POs A	AND PS	Os								
Cos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						L								
CO2		_						Н					М	
CO3								Н						
CO4			М			Μ								
CO5	СО5 Н									Н	Μ			

UNITI	INTRODUCTION	9
Automation a	nd robotics; Robot Anatomy; Classifications of Robots by DC)F motion, platform, power

source, intelligence and application area.

BASIC COMPONENS OF ROBOTS

a) Manipulators; Wrists; End effectors; Control units; Power units; Robot sensors;

b) Robot sensors; Proximity sensors; Ranger sensors, Tactile sensors; Visual sensors; Sensors for mobile Robots.

UNIT II		ROBOT MOTION ANALYSIS AND CONTROL	9					
		to manipulator kinematics; Homogeneous transformation ath control; Robot dynamics; configuration of a Robot controll						
UNIT II	I	ARTIFICIAL INTELLIGENCE	9					
AI –techniques – fuzzy logic, neural network ; LISP programming; AI and Robotics; LIPS in the factory Sensing and digitizing function machine vision; Image processing and analysis; training and vision system; natural language processing; speech recognition; legged locomotion; collision avoidance natural networks computing.								
	/	ROBOT PROGRAMMING	9					
space;	motion	obot programming; lead through programming methods; a r interpolation; weight, signal and delay commands; Branching, h methods.						
UNIT V		APPLICAIONS OF ROBOT	9					
Materia	al hand	ling; Processing operations; Assembly and inspection; Future a	pplication.					
			TOTAL: 45 PERIODS					
TEXT B	OOKS:							
1.		P.Groover, Michellwein,Roger N. Nagal and Nicholas G.O blogy, Programming and applications' Mc Graw Hill, 1987.	rdey, 'Industrial Robotics,					
2.	Harry 1989.	H. Poole, 'Fundamentals of Robotics Engineering', Van Nos	trand Reinhold, New York,					
REFERE	NCE BO	DOKS:						
1.	V.Dam	el Hunt, 'Smart Robots', Chappan and Hall, 1985						
2.	P.G.Ra	nky, C.Y.Ho, 'Robot Modeling', IFS (publication) Ltd., UK, 1985						
3.		ar L. Hall, Bethe C. Hall, 'Robotics – A User Friendly Intro ational Edition, Japan, 1985.	duction", Holt – Saunders					

COURSE CODE:	
10213EE118	

COURSE TITLE: STANDARDS, CALIBRATION, TESTING & MAINTENANCE OF ELECTRICAL EQUIPMENTS

L

3

COURSE CATEGORY: Open Elective

PREAMBLE: This course introduces the students about the electrical safety operations and IEEE standards.

PREREQUISITE COURSES: Basic Electrical Engineering

COURSE EDUCATIONAL OBJECTIVES:

- The objectives of the course are to make the students,
- To develop Calibration Professionals capable of handling calibration laboratories & managing calibration system in an organization
- Understand Measurement Units, Standards, Systems, Testing & Calibration, Traceability & Uncertainty, Mathematics & and Applied Statistics
- Understanding standards ISO 9001 & 17025 requirements with regard to Laboratory Management for implementation & maintenance of accreditation

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Measurement standards and its units	K2
CO2	Measurement methods and characteristics of measurements	К2
CO3	Calibration procedures and methods of calibration	К2
CO4	Basics of Statistics and applied mathematics	К2
CO5	To estimate uncertainty & reporting about uncertainty	К2

CORRELATION OF COS WITH POS AND PSOS

Cos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			М					L	М			L		
CO2	L		М	М				L	М					
CO3			М	L				L	М					
CO4				L				L			М			
CO5	М			Н				L	М					
COURS	SE CON	TENT:												
UNIT	I GI	ENERAL	. METR	OLOGY	,								9	

Global metrology scenario, Measurement units, Measurement standards & Measurement traceability.

UNIT II	MEASUREMENT SYSTEM	9							
	nent methods, Measurement data & characteristics of measuremer ror sources, Measurement systems and capabilities & Measurement	•							
UNIT III	CALIBRATION SYSTEM	9							
Calibration procedures & methods, Industry practices & regulations, Control of calibration environment, Calibration processes, Manual & automated calibration, Calibration results & reporting and Records & records management									
UNIT IV	APPLIED MATHEMATICS & STATISTICS	9							
Technical	& Applied mathematics, QC tools and Applied statistics								
UNIT V	UNCERTAINTY	9							
	ty management, Uncertainty components, Estimation of unc by & Reporting uncertainty	ertainty, Evaluation of							
		TOTAL: 45 PERIODS							
REFERENC	E BOOKS:								
	1. B.V.S Rao 'Operation and Maintenance of Electrical Equipment's' Media Promoters and Publishers, Volume1.								
	 Alan S Morris 'Measurement and Instrumentation: Theory and Application' 2nd Edition, Elsevier, 2015. 								

COORS	E CODE:	COURSE TITLE:	L	Т	Р	C
10213	BEE119	ELECTRICAL SAFETY, OPERATION & REGULATIONS	3	0	0	3
OURSE	CATEGOR	/: Open Elective	l	1	1	1
REAME	BLE: This co	urse introduces the Electrical safety operations and IEEE	Standarc	ls.		
REREQ	UISITE COL	JRSES: Basic Electrical Engineering				
OURSE	EDUCATIO	NAL OBJECTIVES:				
he obje	ctives of th	ne course are to make the students,				
• 9	Study abou	t electrical safety and equipment required to maintain sa	fety.			
• [Details abo	ut Protection guidelines and importance of earthing.				
	•	wledge about Indian electricity rules and regulations and	IEEE star	ndards	for ele	ctric
	safety.					
OURSE	OUTCOME					
Uno	n the succe	-				
Upor CO Nos.	n the succe	S: essful completion of the course, students will be able to: Course Outcomes		-	Bloom	
со		essful completion of the course, students will be able to:	on re	evised	Bloom	
CO Nos.	Basics of	essful completion of the course, students will be able to: Course Outcomes	on re	evised Taxono	Bloom	
CO Nos.	Basics of Protectio	Course Outcomes	on re	evised Taxono K2	Bloom	
CO Nos. CO1 CO2	Basics of Protection Safety re	Course Outcomes electrical safety on procedures and earthing requirements	on re	evised Taxono K2 K2	Bloom omy)	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			М					L	М			L		
CO2	L		М	М				L	Μ					
CO3			М	L				L	М					
CO4				L				L			М			
CO5	М			Н				L	М					

COURSE CONTENT:

UNIT I ELECTRICAL SAFETY

Safety of the Self, Safety of the equipments, Safety of the public.

9

UNIT II	PROTECTION PROCEDURES AND EARTHING	9							
Guidelines	Guidelines, General guidelines on earthing and protection								
UNIT III	SAFETY OPERATIONS	9							
Sign board	Sign boards, Tagging system and procedures.								
UNIT IV	SAFE OPERATING PROCEDURES	9							
Safe opera	ting procedures, Case studies and, Audit basics.								
UNIT V	REGULATIONS	9							
IS, IEEE sta	IS, IEEE standards, Indian Electricity rules and regulations								

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. HSC- A Practical Guide Vol. 1 To 4, National Safety Council, India.
- 2. IS 5216 (Part I)- 1982, 'Recommendations on Safety Procedures and Practices in Electric Work'.

REFERENCE BOOKS:

- 1. SP 30 -1985 Special Publication-National Electric Code, 'Section-14: Electric Aspects of Building Services'.
- 2. IEEE Standard 902.
- 3. Indian Electricity Rules: IE Rules1956.
- 4. Quality Control Order 2003: GO India Ministry of Commerce & Industry.
- 5. IS 8437: Guide on Current Through Human Body
- 6. Related technical papers of present interest.
- 7. Blake R P, Industrial Safety, Prentice, Englewood Cliffs ,1963

COURSE CODE:	
10213EE120	

COURSE TITLE:

ENERGY CONSERVATION AND MANAGEMENT

3	0	0	3
L	Т	Р	С

COURSE CATEGORY: Open Elective

PREAMBLE: This course gives a brief introduction about electrical energy conservation and mitigation.

PREREQUISITE COURSES: Basic Electrical Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- To understand the basics about energy engineering and management.
- To get knowledge about EB and efficient way to use electrical energy.
- Basics about thermal engineering and equipment related to thermal engineering.
- Quantity of electrical energy utilized by different components.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
C01	Introduction about energy consumption, energy management, energy auditing.	К2
CO2	Energy consumption and capacity of different electrical equipment's	К2
CO3	Thermal stability and analysis of electrical equipment's	К2
CO4	Energy conservation in major electrical devices	К2
CO5	Economical oriented energy management systems	К2

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			М					L	М			L		
CO2	L		М	М				L	М					
CO3			М	L				L	М					
CO4				L				L			М			
CO5	М			Η				L	М					

UNIT I	INTRODUCTION	9
Environm	 Power – Past & Present scenario of World; National Energ nental aspects associated with energy utilization –Energy Auditing: Ne ers. Role of Energy Managers. Instruments for energy auditing. 	
UNIT II	ELECTRICAL SYSTEMS	9
Factor Ir	ents of EB billing – HT and LT supply, Transformers, Cable Sizing, Conc nprovement, Harmonics, Electric Motors – Motor Efficiency Comp Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting ion	utation, Energy Efficien
UNIT III	THERMAL SYSTEMS	9
measure	netry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency o s. Steam: Distribution &U sage: Steam Traps, Condensate Recovery, s & Refractories	•
UNIT IV	ENERGY CONSERVATION IN MAJOR UTILITIES	9
Pumps, F Towers –	ans, Blowers, Compressed Air Systems, Refrigeration and Air Conditi D.G.	ioning Systems – Cooling
UNIT V	ECONOMICS	9
	conomics – Discount Rate, Payback Period, Internal Rate of Return, sting –ESCO concept	
		TOTAL: 45 PERIODS
TEXT BO		
v	nergy Manager Training Manual (4 Volumes) available at www.energy vebsite administered by Bureau of Energy Efficiency (BEE), a statutor Power, Government of India, 2004.	
	Vitte. L.C., P.S. Schmidt, D.R. Brown, 'Industrial Energy Mana Iemisphere Publ, Washington, 1988.	gement and Utilisation
REFEREN	CE BOOKS:	
	Callaghn, P.W. 'Design and Management for Energy Conservation', I 981.	Pergamon Press, Oxford
2. [Dryden. I.G.C., 'The Efficient Use of Energy' Butterworths, London, 198	2
	urner. W.C., 'Energy Management Hand Book', Wiley, New York, 1982	2.
З. Т		

	COURSE CODE:	COURSE TITLE:		L	Т	Р	C
	10213EE121	ELECTRICAL MACHINES		3	0	0	3
OURSE	CATEGORY: Open Elective	2					
		nt will get expose basic Electrical DC ations as stepper & Brushless motors.	& AC mad	chines	s con	cepts,	an
REREQU	JISITE COURSES: Basic Ele	ctrical Engineering					
OURSE	EDUCATIONAL OBJECTIVE	ES:					
he obje	ctives of the course are to	make the students,					
• T	o provide knowledge on o	construction and operation of DC mach	ines.				
• T	o provide Theory and ope	eration, phase diagram of transformer.					
• T	o understand the Concep	t of synchronous machines.					
• T	o understand the poly ph	ase Induction motor principle.					
• T	o provide knowledge on s	single phase Induction motor principle.					
OURSE	OUTCOMES :						
Upor	n the successful completio	n of the course, students will be able to	o:				
со			Know				
Nos.		Course Outcomes		revise		l (Bas bom's y)	
		Course Outcomes n and operation of DC Machines		revise Taxo	ed Blo	oom's	
Nos.	Explain the Construction			revise Taxo	ed Blo nomy	oom's	
Nos. CO1	Explain the Construction Explain the Theory and	n and operation of DC Machines operation, phasor diagram of		revise Taxo	ed Blo onomy K2	oom's	
Nos. CO1 CO2	Explain the Construction Explain the Theory and transformer Explain the Concept of s	n and operation of DC Machines operation, phasor diagram of		revise Taxo	ed Blo nomy K2 K2	oom's	

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			М					L	М			L		
CO2	L		М	М				L	М					
CO3			М	L				L	М					
CO4				L				L			М			
CO5	М			Н				L	М					
L	1								1	1	L	1	1	L

U	ΙΤΙ	DC MACHINES	9
		f DC Machines, Methods of excitation, Magnetization and operating cha rters. Speed-torque characteristics of DC motors. Speed control .Losses and	
UN	NIT II	TRANSFORMERS	9
estima	-	eration, Phasor diagram, equivalent circuit, open and short circuit tests. to-transformers. Parallel operation, three phase transformer Connection T&PT	
UN		SYNCHRONOUS MACHINES	9
	-	ypes and constructional features - emf equation, Concept of synchrono MF and MMF methods, Synchronous motor starting and V curves.	us reactance
UN	IIT IV	INDUCTION MACHINES	9
		iction motors - types and constructional features - equivalent circuit - start iagram, induction generators.	ing and speed
UN	NIT V	SINGLE PHASE INDUCTION MACHINES	9
circuit	based or	nduction motors -types and constructional features-principle of operation double revolving field theory, Shaded pole induction motor-Linear relutor-AC series motor.	-
circuit	based or	n double revolving field theory, Shaded pole induction motor-Linear relue pr-AC series motor.	ctance motor
circuit Hyster	based or esis moto	n double revolving field theory, Shaded pole induction motor-Linear relue pr-AC series motor.	ctance motor
circuit Hyster TEXT B	based or esis moto	n double revolving field theory, Shaded pole induction motor-Linear relue pr-AC series motor. TOTA	
circuit Hyster TEXT B	based or esis moto GOOKS: Dr. P.S. Nagrath	n double revolving field theory, Shaded pole induction motor-Linear relue pr-AC series motor.	: 45 PERIODS
circuit Hyster TEXT B 3. 4.	based or esis moto GOOKS: Dr. P.S. Nagrath	n double revolving field theory, Shaded pole induction motor-Linear relu pr-AC series motor. TOTAL Bhimbra, 'Electrical Machinery', Khanna Publications, 7 th Edition, 2007. n, I.J.and Kothari, D.P., 'Electrical Machines', Tata McGraw Hill Education P ing Company Ltd., 4 th Edition, 2010.	L: 45 PERIODS
circuit Hyster TEXT B 3. 4. REFERI	based or esis moto BOOKS: Dr. P.S. Nagrath Publishi ENCE BOO M. G. S	n double revolving field theory, Shaded pole induction motor-Linear relu pr-AC series motor. TOTAL Bhimbra, 'Electrical Machinery', Khanna Publications, 7 th Edition, 2007. n, I.J.and Kothari, D.P., 'Electrical Machines', Tata McGraw Hill Education P ing Company Ltd., 4 th Edition, 2010.	rivate Limited
circuit Hyster TEXT B 3. 4. REFERI 5.	based or esis moto cooks: Dr. P.S. Nagrath Publishi ENCE BOO M. G. S Publicat Arthur I	n double revolving field theory, Shaded pole induction motor-Linear relu pr-AC series motor. TOTAL Bhimbra, 'Electrical Machinery', Khanna Publications, 7 th Edition, 2007. n, I.J.and Kothari, D.P., 'Electrical Machines', Tata McGraw Hill Education P ing Company Ltd., 4 th Edition, 2010. OKS: Say, 'Performance and design of Alternating Current Machines', John W	rivate Limited

COURSE CODE:
10213EE122

COURSE TITLE: INDUSTRIAL ELECTRICAL SYSTEMS

L T P C

COURSE CATEGORY: Open Elective

PREAMBLE: This course helps to understand about overview of electric systems in manufacturing

PREREQUISITE COURSES: Basic Electrical Engineering

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to make the students,

- Introduce various methods of effectively and efficiently utilizing Electrical Energy for different and desired applications.
- Teach the various Electrical Lighting principles and their applications.
- Impart knowledge on effective utilization of Electrical Drives, Electrical Traction and Electro Mechanical process.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Basics about electrical equipment are in manufacturing.	К2
CO2	Application of electrical equipment's in different types of industries.	К2
CO3	Types and working of electric traction systems.	К2
CO4	Industry oriented consumption of electrical energy.	К2
CO5	Basics about Illumination and its types.	К2

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н												L	М
CO2	н							н		М	Н		L	М
CO3	н			Н				н		М	Н		L	М
CO4		м	М	L		М		М		М				
CO5										н				
										••				

UNIT I	ELECTRIC DRIVES AND CONTROL	9
	dividual drive – selection of motors – starting and running cha tric motors – Drives for different industrial applications - Ch culation.	
UNIT II	ELECTROMECANICAL PROCESSES	9
Calculation of er	arization factor – preparation work for Electro plating – Tanks a ergy requirements – Methods of charging and maintenance – N acid batteries ,Components and materials – Chemical reaction ry charges.	li-iron and Ni- cadmium
UNIT III	ELECTRIC TRACTION	9
circuited, shunt	 Speed time characteristics – Series and parallel contro and bridge transitions – Tractive effort calculation – Electric k traction and recent trend. Magnetic Levitation 	
UNIT IV	ELECTRIC HEATING AND WELDING	9
	ctance and Arc furnaces – Construction and fields of application frequency - Dielectric heating – Characteristics of carbon and bot welding.	
UNIT V		_
	ILLUMINATION	9
Production of lig Rousseau's cons	ILLUMINATION tht – Determination of MHCP and MSCP – Polar curves of different truction – Lighting schemes and calculations – Factory lighting – discharge – High pressure and low pressure.	erent types of sources -
Production of lig Rousseau's cons	ht – Determination of MHCP and MSCP – Polar curves of different ht – Lighting schemes and calculations – Factory lighting –	erent types of sources
Production of lig Rousseau's cons	ht – Determination of MHCP and MSCP – Polar curves of different ht – Lighting schemes and calculations – Factory lighting –	erent types of sources - Flood lighting – Electri
Production of lig Rousseau's cons lamps – Gaseous TEXTBOOKS: 1. Open Sh Units), 1	aw Taylor, 'Utilization of Electrical Energy', Oriented Longmar 971.	erent types of sources - Flood lighting – Electri TOTAL: 45 PERIOD
Production of lig Rousseau's cons lamps – Gaseous TEXTBOOKS: 1. Open Sh Units), 1	aw Taylor, 'Utilization of Electrical Energy', Oriented Longmar	erent types of sources - Flood lighting – Electri TOTAL: 45 PERIOD
Production of lig Rousseau's cons lamps – Gaseous TEXTBOOKS: 1. Open Sh Units), 1	The provided and the second se	erent types of sources - Flood lighting – Electri TOTAL: 45 PERIOD
Production of lig Rousseau's cons lamps – Gaseous TEXTBOOKS: 1. Open Sh Units), 1 2. Uppal S. REFERENCE BOO 1. Soni A.	The provided and the second se	erent types of sources - Flood lighting – Electri TOTAL: 45 PERIOD ns Limited (Revised in S
Production of lig Rousseau's cons lamps – Gaseous TEXTBOOKS: 1. Open Sh Units), 1 2. Uppal S. REFERENCE BOC 1. Soni A. Engginee	 and MACP and MSCP – Polar curves of difference of the second secon	erent types of sources - Flood lighting – Electri TOTAL: 45 PERIOD ns Limited (Revised in S

COURSE CODE: 10213EE123

COURSE TITLE: COMPUTER AIDED ANALYSIS OF ELECTRICAL APPARATUS

L T P C

COURSE CATEGORY: Open Elective

PREAMBLE: This course will provide in depth knowledge on DC & AC machines concepts by theoretically reading and practically simulating.

PREREQUISITE COURSES: Basic Electrical Engineering.

COURSE EDUCATIONAL OBJECTIVES:

To impart knowledge on

- To provide knowledge on purpose and procedure of Finite Element Analysis method.
- To educate the design, mesh creation and types of solvers in MagNet software by practical simulation.
- To provide knowledge on DC machine construction, working principle and DC series motor design using MagNet simulation software.
- To educate the operation of transformer by theoretical, design of core and shell type transformer using MagNet simulation software.
- To educate the concept of three phase Induction machines and design of squirrel cage induction motor using MagNet simulation software.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)			
CO1	Explain the purpose of FEA and types of Finite Elements	К2			
CO2	Show the model of object, elements in 1D,2D,3D and types of solvers using MagNet software	КЗ			
CO3	Explain the concept, types of DC machine and show the simulation of DC series motor using MagNet software	КЗ			
CO4	Explain the principle, types of transformer and show the simulation of core, shell type transformer using MagNet software	КЗ			
CO5	Explain the principle, types of DC machine and show the simulation of Squirrel cage induction motor using MagNet software	КЗ			

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	н		Н					М	М					
CO2	М		Н	L				Н	М					
CO3	М		М	Н	L			Н	М		М			
CO4	М		М	Н	L			Н	М		М			
CO5	М		М	Н	L			Н	М		М			

UNIT I	INTRODUCTION TO FEA	9
• •	se of FEA- Discretization model-Mesh refinement- Types of Finite ral procedure for FEA (Preprocessing, solution, post processing)- Ap	
UNIT II	BASICS OF MAGNET SOFTWARE	9
two dimension	esign of Object-Elements-Nodes- make component in a line- one dim design of Cylinder, rectangular, cube –three dimension design of Types of solvers.	•
UNIT III	DC MACHINE	9
•	equation- speed torque equation- Electrical/Mechanical cha design of series DC motor: Wireframe model-solid model-Trans	
UNIT IV	TRANSFORMER	9
•	peration-EMF equation-Phasor diagram, equivalent circuit-Applicati former: Wireframe model-solid model-static analysis.	ion-design of core and
shell type trans	former: Wireframe model-solid model-static analysis. THREE PHASE INDUCTION MOTOR	9
shell type trans UNIT V Three phase In	former: Wireframe model-solid model-static analysis. THREE PHASE INDUCTION MOTOR duction Motor types and constructional features–Torque equations, design of Squirrel cage Motor: Wireframe model-solid model-soli	on-star delta and DO del- Transient 2D wit
shell type trans UNIT V Three phase In starter- applica	former: Wireframe model-solid model-static analysis. THREE PHASE INDUCTION MOTOR duction Motor types and constructional features–Torque equations, design of Squirrel cage Motor: Wireframe model-solid model-soli	on-star delta and DO
shell type trans UNIT V Three phase In starter- applica motion analysis TEXTBOOKS:	former: Wireframe model-solid model-static analysis. THREE PHASE INDUCTION MOTOR duction Motor types and constructional features—Torque equatic tions, design of Squirrel cage Motor: Wireframe model-solid mod	9 on-star delta and DO del- Transient 2D wit TOTAL: 45 PERIOD
shell type trans UNIT V Three phase In starter- applica motion analysis TEXTBOOKS:	former: Wireframe model-solid model-static analysis. THREE PHASE INDUCTION MOTOR duction Motor types and constructional features–Torque equations, design of Squirrel cage Motor: Wireframe model-solid model-soli	9 on-star delta and DO del- Transient 2D wit TOTAL: 45 PERIOD
shell type trans UNIT V Three phase In starter- applica motion analysis TEXTBOOKS: 1. Reddy.J	former: Wireframe model-solid model-static analysis. THREE PHASE INDUCTION MOTOR duction Motor types and constructional features—Torque equatic tions, design of Squirrel cage Motor: Wireframe model-solid mod	9 on-star delta and DO del- Transient 2D wit TOTAL: 45 PERIOD a McGraw-Hill, 2005
shell type trans UNIT V Three phase In starter- applica motion analysis TEXTBOOKS: 1. Reddy.J 2. Seshu,F	former: Wireframe model-solid model-static analysis. THREE PHASE INDUCTION MOTOR duction Motor types and constructional features—Torque equatic tions, design of Squirrel cage Motor: Wireframe model-solid mod .N., 'An Introduction to the Finite Element Method', 3 rd Edition, Tata p, 'Test book of Finite Element Analysis', Prentice-Hall of India Pvt.Lto	9 on-star delta and DO del- Transient 2D wit TOTAL: 45 PERIOD a McGraw-Hill, 2005
shell type trans UNIT V Three phase In starter- applica motion analysis TEXTBOOKS: 1. Reddy.J 2. Seshu,F REFERENCE BO	former: Wireframe model-solid model-static analysis. THREE PHASE INDUCTION MOTOR duction Motor types and constructional features—Torque equatic tions, design of Squirrel cage Motor: Wireframe model-solid mod .N., 'An Introduction to the Finite Element Method', 3 rd Edition, Tata p, 'Test book of Finite Element Analysis', Prentice-Hall of India Pvt.Lto	9 on-star delta and DC del- Transient 2D wit TOTAL: 45 PERIOD a McGraw-Hill, 2005 d., New Delhi, 2007
shell type trans UNIT V Three phase In starter- applica motion analysis TEXTBOOKS: 1. Reddy.J 2. Seshu,F REFERENCE BO 1. Dr. P.S. 2. Nagrath	former: Wireframe model-solid model-static analysis. THREE PHASE INDUCTION MOTOR duction Motor types and constructional features—Torque equations, design of Squirrel cage Motor: Wireframe model-solid model	9 on-star delta and DC del- Transient 2D wit TOTAL: 45 PERIOD a McGraw-Hill, 2005 d., New Delhi, 2007
shell type trans UNIT V Three phase In starter- applica motion analysis TEXTBOOKS: 1. Reddy. 2. Seshu,F REFERENCE BO 1. Dr. P.S. 2. Nagrath Publish 3. M. G.	former: Wireframe model-solid model-static analysis. THREE PHASE INDUCTION MOTOR duction Motor types and constructional features—Torque equations, design of Squirrel cage Motor: Wireframe model-solid model	9 on-star delta and DC del- Transient 2D wit TOTAL: 45 PERIOD a McGraw-Hill, 2005 d., New Delhi, 2007 007.

COURSE CODE:	COURSE TITLE:	L	т	Ρ	С
10213EE124	GREEN ENERGY RESOURCES	3	0	0	3
COURSE CATEGOR	Y: Open Elective				
	course focuses on the renewable energy based electric energy Waste to energy, other renewable energy resources.	gen	erati	on: S	olar,
PREREQUISITE CO	URSES: Basic Electrical Engineering.				
	ONAL OBJECTIVES :				
To impart knowled	lge on				
Concepts or resources.	of the renewable energy sources like wind, solar, Bio and other ren	newal	ole e	nergy	1
	ental friendly energy production and consumption.				
 Environme 	intal menuly energy production and consumption.				

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain about Renewable Energy resources and its importance.	К2
CO2	Understand the process of photovoltaic power generation.	К2
CO3	Explain the process of power generation using wind energy resources.	К2
CO4	Summarize the power generation using Bio energy techniques.	К2
CO5	Summarize the fundamentals and the other renewable energy resource applications.	К2

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1											L	L	L	L
CO2		н	н					М	М					
CO3		Н												
CO4			н		Н	L	Н				L	L		
CO5		L			L			М	М		L	L	М	М
COURS	SE CON	TENT												
U	ΝΙΤΙ	IN	TRODU	ICTION									6	
			ndia, c vable ei				rgy sou	urces,	energy	efficie	ency a	nd en	ergy s	ecurity

UNIT II	SOLAR ENERGY	12
effect, solar ce	types of collectors, collection systems, photo voltaic (PV) techno ls, characteristics of PV systems, equivalent circuit, and array design, efficiency calculations, applications.	•.
UNIT III	WIND ENERGY	9
	stems, wind speed and power relation components, turbine types, tund site selection, wind energy forecasting, variable speed operatio	-
UNIT IV	BIO ENERGY	9
	io-gas: principles of bio-conversion, bio-gas digesters types, gas yie fermentation and wet processes, applications-utilization for cooking	
UNIT V	OTHER RENEWABLE ENERGY RESOURCES	9
	ergy, ocean thermal energy, wave energy, Tidal energy, waste to ene	rgy, heat to energy
		TOTAL: 45 PERIOD
TEXTBOOKS:		
1. Rai G.D	, 'Non-conventional Energy Sources' Khanna Publishers, 2006.	
2. A.Duffi	e and W.A.Beckmann, 'Solar Engineering of Thermal Processes', John	Wiley, 1980.
REFERENCE BO	OKS:	
1. F.Kreitl	and J.F.Kreider, 'Principles of Solar Engineering', McGraw-Hill (1978).
2. T.N.Ve	iroglu, 'Alternative Energy Sources', Vol 5 and 6, McGraw-Hill (1978)	
3. David H	lu. 'Hand Book of Industrial Energy Conservation', Van Nostrand Co.,	1983.
ONLINE RESOU	DCLC	

1. books.google.co.in

2. www.scribd.com/.../Solar-engineering-of-Thermal-processes-Duffie

	E:	COURSE TITLE:	L	т	Р	C
10213EE125	5	ROBOTICS AND AUTOMATION	3	0	0	3
OURSE CATE	EGOF	RY: Open Elective				
REAMBLE: 1 utomation.	Го еі	nable students to understand about the working conce	epts of ro	bot an	d its r	ole i
REREQUISIT	e co	OURSES: Basic Electrical Engineering				
	CATI	ONAL OBJECTIVES :				
• To stu	udy t	he basics of robots.				
• To dis	scuss	about the different actuators of Robot.				
• To un	ders	tand the kinematics and inverse kinematics of robots.				
• To an	alyse	e the trajectory planning for robot.				
 To ela 	abora	ate the control of robots for some specific applications.				
	CON					
	CON	1ES :		•	Bloom	
OURSE OUT Upon the CO	CON succ	1ES : cessful completion of the course, students will be able to:	on re	vised	Bloom	
OURSE OUT Upon the CO Nos.	CON succ	IES : cessful completion of the course, students will be able to: Course Outcomes	on re	evised l axono	Bloom	
OURSE OUT Upon the CO Nos. CO1	COV succ Unc Elat	IES : cessful completion of the course, students will be able to: Course Outcomes derstand the basics of robots	on re	vised I axono K2	Bloom	
OURSE OUT Upon the CO Nos. CO1 CO2	CON succ Unc Elat	IES : cessful completion of the course, students will be able to: Course Outcomes derstand the basics of robots borate the function of different sensors in the robot	on re	K2 K2	Bloom	

CORRELATION OF COs WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	н													
CO2	н							н		м	н			
CO3	н			н				н		м	н			
CO4		м	м	L		м		м		М			М	М
CO5										н			М	М

COURSE CONTE		-
UNIT I	BASIC CONCEPTS	9
	origin of robotics – different types of robot – various generation ov's laws of robotics – dynamic stabilization of robots.	ns of robots – degrees o
UNIT II	POWER SOURCES AND SENSORS	9
• •	umatic - electric drives – variable speed arrangements – pat otics – artificial intelligent– machine vision – ranging – laser – a sensors.	
UNIT III	MANIPULATORS, ACTUATORS AND GRIPPERS	9
	manipulators – manipulator dynamics and force control – entrol circuits – end effectors – grippers – design considerations.	lectronic and pneumation
UNIT IV	KINEMATICS AND PATH PLANNING	9
	lems - Solution of inverse kinematics problem – hill climb nguages- sliding mode control	ing techniques – robo
UNIT V	APPLICATIONS	9
•	 robot cell design – selection of robot – Micro and Nano rob acturing and non- manufacturing applications. 	ots- machine interface -
		TOTAL: 45 PERIODS
TEXTBOOKS:		
	. Weiss G.M., Nagel R.N., Odraj N.G., 'Industrial Robotics', Mc G 'Control in Robotics and Automation: Sensor Based Integra i, 1998.	
REFERENCE BOO	DKS:	
	R.D., Chimielewski T.A., Negin M., 'Robotic Engineering – A e Hall of India, New Delhi, 1994.	n integrated Approach'

2. Mc Kerrow P.J. 'Introduction to Robotics', Addison Wesley, USA, 1991.

COURSE		COURSE TITLE:		L	Т	Р	C
10213E	E126	WIND ENERGY TECHNOLOGY		3	0	0	3
OURSE CAT	EGORY: Ope	en Elective					
	-	y is the fast-growing renewable source for	electricity	/ gene	ration	. This o	cours
resents a b	road overvie	ew of wind energy technology.					
REREQUISI	TE COURSES	Basic Electrical Engineering					
OURSE EDI	JCATIONAL	OBJECTIVES :					
• To le	earn about P	ower extraction from wind energy.					
• To d	istinguish th	e components and design of wind tower.					
• To u	nderstand w	vorking principle of induction generator, sync	hronous ۽	genera	tor.		
OURSE OU	TCOMES :						
Upon th	e successful	completion of the course, students will be ab	ole to:				
CO Nos.		Course Outcomes	K	on re	-	evel (Ba Bloom omy)	
CO1	Express th	e relation between speed and power			К2		
CO2	Classify th	e components of wind tower			К2		
CO3	Demonstr	ate the design features of wind tower			К2		
CO4	Explain th	e principle of operation of Types of generator	r		К2		
04							

CORRELATION OF COS WITH POS AND PSOS

cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	L				L				L	М				
CO2	L								L	М				
CO3	Н		Н					М	L	М			L	Μ
CO4	L							М	Μ	М				
CO5	L		Μ		М			Н	Μ	М			L	Μ
COURS	SE CON	TENT :												
UNIT	I IN	TRODU	ICTION										9	
•		ower R s, Wind								or Swep	ot Area	, Air D	ensity,	Globa

UNIT II	WIND TURBINE COMPONENTS	9
•	Components: Tower, Turbine Blades, Yaw Control, Pitch Control, or, Transformer, Anemometer.	Gearbox, Safety brakes,
UNIT II	TOWER DESIGN	9
•	Design Features: Number of Blades, Rotor Upwind, Downwind, Horize axis wind turbines, Spacing of the Towers.	ontal axis wind turbines,
	TYPES OF GENERATORS	9
	Generator: Induction generator, Synchronous generator, Fixed and vargeration.	ariable speed operations,
UNIT V	CONTROL OF WIND POWER	9
	m Power Operation: Constant Tip-Speed Ratio Scheme, Peak Power Tra Requirements: Speed and Rate Control.	acking Scheme; System
		TOTAL: 45 PERIODS
TEXTBO	OKS:	
	Mukund R. Patel 'Wind and Solar Power Systems: Design, Analysis, ar (1999).	nd Operation' -CRC Press
	Sathyajith Mathew, 'Wind Energy Fundamentals, Resource Analysis a (2006).	and Economics' Springer
REFERE	ICE BOOKS:	
1.	S.N.Bhadra, D.Kastha,S.Banerjee, 'Wind Electrical Systems', Oxford Uni	versity Press, 2010.
2.	on Boldea, 'Variable Speed Generators', Taylor & Francis Group, 2006.	
	E.W. Golding "The Generation of Electricity by Wind Power", Re Trowbridge, 1976.	edwood Burn Ltd.,
4.	N. Jenkins, 'Wind Energy Technology' John Wiley & Sons, 1997.	

COURSE	CODE:	COURSE TITLE:	L	Т	Р	C
102138	E127	ELECTRICAL SAFETY AND SAFETY MANAGEMEN	Т 3	0	0	3
COURSE CAT	FEGORY: Op	en Elective	·			
PREAMBLE: and regulation		will enable the students to understand the basic	concept	s of ele	ectrical	safet
PREREQUISI	TE COURSES	: Basic Electrical Engineering				
		OBJECTIVES:				
The objectiv	es of the co	urse are to make the students,				
• To s						
	-	ctrical safety rules, regulations and quality manage	ement b	y the po	ower fa	ctor
	rovement.	ctrical safety rules, regulations and quality manage	ement b	y the po	ower fa	ctor
impi	rovement.	ctrical safety rules, regulations and quality manage	ement b	y the po	ower fa	ctor
impi	rovement.	ctrical safety rules, regulations and quality manage	ement b	y the po	ower fa	ctor
impi	rovement.		Know	y the pc edge Le revised Taxono	evel (Ba Bloom	ased
impi COURSE OU Upon th CO	rovement. TCOMES : e successful	completion of the course, students will be able to: Course Outcomes nd the Indian electricity rules and their	Know	edge Le	evel (Ba Bloom omy)	ased
impi COURSE OU Upon th CO Nos.	TCOMES : e successful Understar significant	completion of the course, students will be able to: Course Outcomes and the Indian electricity rules and their ce. e safety standard in residential, commercial, and	Know	edge Le revised Taxono	evel (Ba Bloom omy)	ased

005	Ecalli about cicetheal safety installation, testing.	RΣ
CO4	Understand about flashovers and corona discharge.	К2
CO5	Understand about electrical safety in distribution system.	К2

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н		Н					М	М					
CO2	Μ		Н	L				Н	М					
CO3	Μ		Μ	Н	L			Н	М		Μ			
CO4	М		Μ	Н	L			Н	М		М			
CO5	М		Μ	Н	L			н	М		М		L	L

COURSE CONTENT:

UNIT I INDIAN ELECTRICITY RULES AND ACTS AND THEIR SIGNIFICANCE

9

Objective and scope – ground clearances and section clearances – standards on electrical safety - safe limits of current, voltage – earthing of system neutral – Rules regarding first aid and fire fighting facility.

UNIT II	ELECTRICAL SAFETY IN RESIDENTIAL, COMMERCIAL AND AGRICULTURAL INSTALLATIONS	9
shock –	and fitting – Domestic appliances – water tap giving shock – shock from multi-storied building – Temporary installations – Agricultural pump in or safety in the use of domestic electrical appliances.	
UNIT III	SAFETY DURING INSTALLATION, TESTING AND COMMISSIONING, OPERATION AND MAINTENANCE	9
quality a	hary preparations – safe sequence – risk of plant and equipment – safety and safety - personal protective equipment – safety clearance notice - rds for operators – safety	
UNIT IV	/ ELECTRICAL SAFETY IN HAZARDOUS AREAS	9
	bus zones – class 0,1 and 2 – spark, flashovers and corona discharge and fu ications of electrical plants, equipment's for hazardous locations – Class	ification of equipmen
	re for various hazardous gases and vapours – classification of equ us locations.	inprinent/enclosure to
	us locations.	9
hazardo UNIT V Total qu	us locations. ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM Uality control and management – Importance of high load factor – Disady - Causes of low P.F. – power factor improvement – equipment's	9 vantages of low powe
hazardo UNIT V Total qu factor –	us locations. ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM Uality control and management – Importance of high load factor – Disady - Causes of low P.F. – power factor improvement – equipment's	9 vantages of low powe
hazardo UNIT V Total qu factor –	us locations. ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM Hality control and management – Importance of high load factor – Disady - Causes of low P.F. – power factor improvement – equipment's - ement.	9 vantages of low powe – Importance of P.F
hazardo UNIT V Total qu factor – improve TEXT BO 1.	us locations. ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM Hality control and management – Importance of high load factor – Disady - Causes of low P.F. – power factor improvement – equipment's - ement.	9 /antages of low powe – Importance of P.F TOTAL: 45 PERIODS
hazardo UNIT V Total qu factor – improve TEXT BO 1. 2.	us locations. ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM vality control and management – Importance of high load factor – Disady - Causes of low P.F. – power factor improvement – equipment's - ement. DOKS: Rao, S. and Saluja, H.L., "'Electrical Safety, Fire Safety Engineering and	9 vantages of low powe – Importance of P.F TOTAL: 45 PERIODS Safety Management
hazardo UNIT V Total qu factor – improve TEXT BO 1. 2.	US locations. ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM Hality control and management – Importance of high load factor – Disady - Causes of low P.F. – power factor improvement – equipment's - ement. DOKS: Rao, S. and Saluja, H.L., "Electrical Safety, Fire Safety Engineering and Khanna Publishers, 1988. Pradeep Chaturvedi, 'Energy Management Policy, Planning and Utilizatio	9 vantages of low powe – Importance of P.F TOTAL: 45 PERIODS Safety Management
hazardo UNIT V Total qu factor – improve TEXT BO 1. 2. REFEREN	US locations.	9 vantages of low powe – Importance of P.F TOTAL: 45 PERIODS Safety Management' n', Concept Publishing
hazardo UNIT V Total qu factor – improve TEXT BO 1. 2. REFEREN 1.	us locations. Image: Control and management – Importance of high load factor – Disady - Causes of low P.F. – power factor improvement – equipment's - ement. DOKS: Rao, S. and Saluja, H.L., "'Electrical Safety, Fire Safety Engineering and Khanna Publishers, 1988. Pradeep Chaturvedi, 'Energy Management Policy, Planning and Utilizatio Company, 1997. NCE BOOKS:	9 /antages of low powe – Importance of P.F TOTAL: 45 PERIODS Safety Management n', Concept Publishin, Hill, 1998.

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10213EE201	SWITCH MODE POWER SUPPLY DESIGN AND DEVELOPMENT	2	0	2	3

COURSE CATEGORY: Open Elective

PREAMBLE: The course is designed as lab dominated theory course to make the student acquire thorough knowledge in the field of power supply design for the given devices or equipments. Since power supply system is absolutely necessary for all equipments which produce constant voltage at the output irrespective of changes in supply voltage. This course is designed from understanding the fundamental of SMPS to designing an SMPS for the given equipments.

PREREQUISITE COURSES: Basic Electrical Engineering, Basic Electronics Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- To understand detailed insight of SMPS and its various topologies
- To design and fabricate power supply system for the given equipment.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
CO1	Deliver the fundamental concept of SMPS	К2
CO2	Understand the working of rectifier, chopper, amplifier circuit, voltage and current sensors.	К2
CO3	Explain the various SMPS topologies	К2
CO4	Design SMPS for specific applications	К6
CO5	Analyze the power quality issues using power quality analyzer	К3

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	L		Н								М			
CO2	М							L			L			
CO3			М								М			
CO4			Н					М			М			
CO5			М										L	L

UNIT I	INTRODUCTION	6
	on to SMPS-types-evolution- need of SMPS- Linear Regulator vs SMPS s-Applications	– Block diagram
UNIT II	COMPONENTS	6
regulator a	pes and its operations-purpose of amplifier in SMPS-amplifier circuit used and its types-comparator and its types- importance of comparator-Chopper pper in SMPS	•
UNIT III	SMPS CONVERTER TOPOLOGIES	6
Buck, Boos	t, Buck-Boost, Push-Pull, Fly back, Resonant, forward Converter- Operation	
UNIT IV	DESIGN OF SMPS	6
	of switching devices for SMPS-switching frequency-PWM techniques-switch nparator design- need of voltage and current sensors and types	ing losses-duty
UNIT V	POWER QUALITY ASSESSMENT	6
harmonics	lity analyzer-block diagram and its working-applications-measurement of co at source side of SMPS -UPS output side-measurement of input power lity issues in load side for single phase and three phase loads.	-
harmonics	at source side of SMPS -UPS output side-measurement of input power lity issues in load side for single phase and three phase loads.	-
harmonics	at source side of SMPS -UPS output side-measurement of input power lity issues in load side for single phase and three phase loads.	factor, analysis o
harmonics power qua TEXT BOOH 1. Kei	at source side of SMPS -UPS output side-measurement of input power lity issues in load side for single phase and three phase loads.	factor, analysis o OTAL: 30 PERIOD
harmonics power qua TEXT BOOH 1. Kei Edu 2. Ma	at source side of SMPS -UPS output side-measurement of input power lity issues in load side for single phase and three phase loads. Te KS: ith Billings, Taylor Morey, 'Switch mode Power Supply Handbook', 3 rd Ed	factor, analysis o OTAL: 30 PERIOD ition, McGraw-Hi
harmonics power qua TEXT BOOH 1. Kei Edu 2. Ma	at source side of SMPS -UPS output side-measurement of input power lity issues in load side for single phase and three phase loads. Te KS: ith Billings, Taylor Morey, 'Switch mode Power Supply Handbook', 3 rd Ed ucation, New York, 2012. aniktala, Sanjaya (2006), Switching Power Supplies A to Z, Newnes /Elsev 70-0	factor, analysis o OTAL: 30 PERIOD ition, McGraw-Hi
harmonics power qua TEXT BOOH 1. Kei Edu 2. Ma 79 REFERENCI 1. Ab	at source side of SMPS -UPS output side-measurement of input power lity issues in load side for single phase and three phase loads. Te KS: ith Billings, Taylor Morey, 'Switch mode Power Supply Handbook', 3 rd Ed ucation, New York, 2012. aniktala, Sanjaya (2006), Switching Power Supplies A to Z, Newnes /Elsev 70-0	factor, analysis o OTAL: 30 PERIOD ition, McGraw-Hi vier, ISBN 0-7506
harmonics power qua TEXT BOOH 1. Kei Edi 2. Ma 79 REFERENCI 1. Ab Edi 2. ON	at source side of SMPS -UPS output side-measurement of input power lity issues in load side for single phase and three phase loads. Te KS: ith Billings, Taylor Morey, 'Switch mode Power Supply Handbook', 3 rd Ed ucation, New York, 2012. aniktala, Sanjaya (2006), Switching Power Supplies A to Z, Newnes /Elsev 70-0 E BOOKS: raham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power Su	factor, analysis o OTAL: 30 PERIOD ition, McGraw-Hi vier, ISBN 0-7506 upply Design', 3
harmonics power qua TEXT BOOH 1. Kei Edu 2. Ma 79 REFERENCI 1. Ab Edi 2. ON De	at source side of SMPS -UPS output side-measurement of input power lity issues in load side for single phase and three phase loads. To KS: ith Billings, Taylor Morey, 'Switch mode Power Supply Handbook', 3 rd Ed ucation, New York, 2012. aniktala, Sanjaya (2006), Switching Power Supplies A to Z, Newnes /Elsev 70-0 E BOOKS: raham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power Su ition, New York: McGraw-Hill, 1999 A Semiconductor (July 11, 2002). 'SWITCHMODE Power Supplies—Reference	factor, analysis o OTAL: 30 PERIOD ition, McGraw-Hi vier, ISBN 0-7506 upply Design', 3
harmonics power qua TEXT BOOH 1. Kei Edu 2. Ma 79' REFERENCI 1. Ab Edu 2. ON De EXPERIMEN	at source side of SMPS -UPS output side-measurement of input power lity issues in load side for single phase and three phase loads. TO KS: ith Billings, Taylor Morey, 'Switch mode Power Supply Handbook', 3 rd Ed ucation, New York, 2012. aniktala, Sanjaya (2006), Switching Power Supplies A to Z, Newnes /Elsev 70-0 E BOOKS: raham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power Su ition, New York: McGraw-Hill, 1999 A Semiconductor (July 11, 2002). 'SWITCHMODE Power Supplies—Refer- sign Guide' (PDF). Retrieved 2011.	factor, analysis o OTAL: 30 PERIOD ition, McGraw-Hi vier, ISBN 0-7506 upply Design', 3
harmonics power qua TEXT BOOH 1. Kei Edu 2. Ma 79 REFERENCI 1. Ab Edu 2. ON De EXPERIMEN 1. Identifi	at source side of SMPS -UPS output side-measurement of input power lity issues in load side for single phase and three phase loads. TO KS: ith Billings, Taylor Morey, 'Switch mode Power Supply Handbook', 3 rd Ed ucation, New York, 2012. aniktala, Sanjaya (2006), Switching Power Supplies A to Z, Newnes /Elsev 70-0 E BOOKS: raham I. Pressman, Keith Billingss, Taylor Morey 'Switching Power Su ition, New York: McGraw-Hill, 1999 N Semiconductor (July 11, 2002). 'SWITCHMODE Power Supplies—Refer- sign Guide' (PDF). Retrieved 2011. NTS: (15 PERIODS)	factor, analysis o OTAL: 30 PERIOD ition, McGraw-H vier, ISBN 0-7500 upply Design', 3

- 3) a. Selection of switches, snubber circuit design
 - b. Study of Magnetic circuits and Transformer
- 4) To Generate Pulse width modulation signal using different circuits
- 5) a. Design of feedback controller and amplifier circuit
 - b. Op-amp circuits for current and voltage sensing in converters.
- 6) a. Measurement of output voltage using voltage sensor
 - b. Study the working of tiny fly back step down transformer
- 7) Design and testing of a voltage regulator circuit
- 8) Design and testing of simple DC chopper
- 9) Design of non-isolated DC-DC converters in different operating modes
- 10) Microcontrollers selection to use in SMPS circuits
- 11) Study of popular PWM Control IC's (SG 3525,TL 494,MC34060 etc.)
- 12) Study of popular PFC Control ICs MC34062 and UC 3854
- 13) Design of driver circuits
- 14) Design and development of SMPS and measure the input power factor and THD of input voltage and current using a power quality analyzer.
- 15) Troubleshooting of SMPS.

COUR	SE CODE:	COURSE TITLE:		L	Т	Р	0
102 1	L3EE301	VOLTAGE STABILIZER FABRICATIO	N	0	0	2	1
OURSE C	CATEGORY: Op	en Elective					1
		includes the development of skills in power					
		This course is designed from understanding t abilizer for the given power rating.	he fundame	ental	of volta	age sta	biliz
			_ ·				
REREQU	ISITE COURSES	: Basic Electrical Engineering, Basic Electroni	cs Engineer	ring			
OURSE E	DUCATIONAL	OBJECTIVES:					
he objec	tives of the cou	urse are to make the students,					
اما م							
• 10	entify the requ	uirement of voltage stabilizer for domestic ec	luipments.				
• To	o design of trar	nsformer for a given power rating of voltage	stabilizer.				
• To	o design of tran o understand d	nsformer for a given power rating of voltage lesign procedures of relay driver circuit for vo	stabilizer. Itage stabi				
 To To To 	o design of tran o understand d o familiarize wi	nsformer for a given power rating of voltage	stabilizer. Itage stabi		or any	proble	em.
• To • To • To OURSE C	o design of tran o understand d o familiarize wi	nsformer for a given power rating of voltage s lesign procedures of relay driver circuit for vo th the techniques for trouble shooting the vo	stabilizer. Itage stabi Itage stabi		or any	proble	em.
• To • To • To OURSE C	o design of tran o understand d o familiarize wi	nsformer for a given power rating of voltage lesign procedures of relay driver circuit for vo	stabilizer. oltage stabi oltage stabi ole to: Lev	el of l	or any learnin i revise xonon	g dom ed Bloc	ain
To To To To To To OURSE C Upon CO	o design of tran o understand d o familiarize wi DUTCOMES : the successful	nsformer for a given power rating of voltage lesign procedures of relay driver circuit for vo th the techniques for trouble shooting the vo completion of the course, students will be a	stabilizer. oltage stabi oltage stabi ole to: Lev	el of l	learnin 1 revise	g dom ed Bloc	ain
 To To To OURSE O Upon CO Nos. 	o design of tran o understand d o familiarize wi DUTCOMES : the successful Understand	nsformer for a given power rating of voltage lesign procedures of relay driver circuit for vo th the techniques for trouble shooting the vo completion of the course, students will be a Course Outcomes	stabilizer. oltage stabi oltage stabi ole to: Lev	el of l	learnin i revise ixonon	g dom ed Bloc	ain
 To To To OURSE O Upon CO Nos. CO1 	o design of tran o understand d o familiarize wi DUTCOMES : the successful Understand Design of tra	nsformer for a given power rating of voltage a lesign procedures of relay driver circuit for vo th the techniques for trouble shooting the vo completion of the course, students will be a Course Outcomes the basics of voltage stabilizer	stabilizer. oltage stabi oltage stabi ole to: Lev	el of l	learnin revise xonon K2	g dom ed Bloc	ain

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	L	М	М		L				Н		Н		
CO2	L	М	L	Н		М				Н		Н	L	L
CO3	М	М	Н	Н		Н				L		Н	L	L
CO4	L	М	L	Н		L				Н		Н	М	М

COURSE CONTENT:

DESIGN OF VOLTAGE STABILIZER

Introduction-Need of voltage stabilizer-Power rating calculation-Block diagram- complete circuit and its operation -Relay driver circuit design-Comparator design-Transformer design

EXPERIMENTS

- 1. Identification of components and its terminals used in voltage stabilizer.
- 2. Design and development of transformer for given power rating.
- 3. Design and development of comparator circuit for voltage stabilizer.
- 4. Design and development of relay driver circuit used in voltage stabilizer.
- 5. Voltage measurement using voltage sensor.
- 6. Design of amplifier circuit for voltage stabilizer.
- 7. Demonstration and testing of voltage stabilizer for various input voltage.
- 8. Trouble shooting of voltage stabilizer.

TOTAL: 30 PERIODS

TEXTBOOKS:

 M. Lotia 'Modern Voltage Stabilizer Servicing: Introduction, Basic Principle and Repairing', ISBN 10: 8176562831 / ISBN 13: 9788176562836, BPB Publications, 2006.

REFERENCE BOOKS:

 Osama Butt 'Automatic Voltage Stabilizer by Using Pulse Width Modulation', ISBN 10: 365989317X / ISBN 13: 9783659893179, Published by LAP Lambert Academic Publishing Jun 2016, 2016.

B.Tech. Programme Specialization in Computer Systems

List of Courses (18 Credits)

S.NO.	COURSE CODE	COURSE NAME	L	т	Р	С
1.	10212EE101	Computer Architecture	3	0	0	3
2.	10212EE102	Operating Systems	3	0	0	3
3.	10212EE103	Object Oriented Programming	3	0	0	3
4.	10212EE104	Data Structures and Algorithms	3	0	0	3
5.	10212EE105	Computer Networks and Communication	3	0	0	3
6.	10212EE106	Artificial Intelligence	3	0	0	3

COL	JRSE CO	DE:			COU	IRSE TITI	E:				L	т	Р	C
10	212EE1	01		со	MPUTE	R ARCHI	TECTUR	E			3	0	0	3
COURS	E CATE	GORY: S	pecializ	ation										
					-	basic st puter ar				netic ar	nd logio	cal ui	nit, m	emory
PRERE	QUISITE		ES: NIL											
•	To und To stu floatin To stu To stu	idy the ng-point dy the d	l the bas design operatio lifferent ypes of	sic struc of arith ons ways of	ture and metic a f commu	d operat nd logic unicating hniques	unit ar g with I/	nd in O de	nple evice	mentat	tandar			
Upon t	he succ	essful co	ompletio	on of the	e course	e, studer	nts will b	e ab	le to) :				
CO Nos.			Co	ourse Ou	itcomes					(nowled revised	-	-		
C01		iin the b ital com		icture a	nd funct	tional op	peration	of			К	2		
CO2		liarize w nplemer			-	ms and	procedu	ure			К	2		
CO3		uctions				tent exe in data					К	2		
CO4		marize d lard inte				I/O de	evices a	nd			К	2		
CO5	ldent Mana		rforman t and de		nsiderat a digital	ion in comput	Memo er.	ory			К	3		
CORRE	LATION	I OF CO		Os										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	РС	08	PO9	PO10	P	011	PO12
CO1	Н		М										L	М
CO2	М	м	М	L										L
CO3	М		М											
CO4	М		М											L
CO5	Н	м	М	L	м								L	L

COURSE CO	DNTENT :	
UNIT I	BASIC STRUCTURE OF COMPUTERS	9
locations a	units – Basic operational concepts - Bus structures – Software performance - and addresses – Memory operations – Instruction and instruction sequ modes – Assembly language – Basic I/O operations .	
UNIT II	ARITHMETIC UNIT	9
numbers –	d subtraction of signed numbers – Design of fast adders –Multiplication of pos Signed operand multiplication and fast multiplication – Integer division – Floati nd operations.	
UNIT III	BASIC PROCESSING UNIT	9
Hardwired	al concepts – Execution of a complete instruction – Multiple bus organ control – Micro programmed control – Pipelining –Basic concepts – Data hazards – Influence on Instruction sets – Data path and control consideration.	
UNIT IV	I/O ORGANIZATION	9
I/O device	Access – Interrupts – DMA – Buses – Interface circuits – Standard I/O Interfaces	5
UNIT V	MEMORY SYSTEM	9
operation -	epts – Semiconductor RAM – ROM –Flash Memory – RAID operations - - size and cost – Cache memories – Performance consideration – Memory Ma hts – Secondary storage- Virtual memory	
	TOTAL: 45	PERIODS
ТЕХТВООК	S:	
Edit 2. Dav	Hamacher, Zvonko Vranesic, Safwat Zaky, 'Computer Organization', McGraw ion, Reprint 2012. id A. Patterson and John L. Hennessy, 'Computer Organization and De dware/Software Interface', Fourth Edition, Elsevier, 2011	
REFERENCE	BOOKS:	
2. M.I 3. Beł	osh T. K., 'Computer Organization and Architecture', Tata McGraw-Hill, 3 rd Editi Morris Mano, 'Computer System Architecture', 3 rd Edition, Pearson Education, 2 proozParhami, 'Computer Architecture', Oxford University Press, 2007. n P. Hayes, 'Computer Architecture and Organization', 3 rd Edition, Tata Mc 98.	2007.

(COUR	SE CODE:				COUR	SE TITLE	:	L T P C						
	1021	2EE102		OPERATING SYSTEMS						3	0	0	3		
COURS	E CAT	EGORY: S	pecializa	ition											
	PREAMBLE: To provide an introduction to the operating system functions, design and implementation of how an operating system controls the computing resources and provide services to the users.														
PREREC	PREREQUISITE COURSES: NIL														
COURS	COURSE EDUCATIONAL OBJECTIVES :														
To understand the structure and functions of OS															
To learn about Processes, Threads and Scheduling algorithms															
 To understand the principles of concurrency and Deadlocks To learn various memory management schemes 															
•		udy I/O m			•		es								
	10 30		anagen		THC 595										
COURS	E OUI	COMES :													
Upon the successful completion of the course, students will be able to:															
CO Nos	•	Course Outcomes Knowledge Level (Based on revi Bloom's Taxonomy)							revised						
CO1		Explain t operating					erview ons	of	К2						
CO2	2		Apply the concept of process management to real time problems K3					КЗ							
CO3	5	Illustrate schedulin		•	s of	concurre	ency a	nd			ĸ	2			
CO4	ļ.	Elaborate managem					memo				K	2			
CO5	;	Summariz device ma			agement	and Inp	out/outp	out			K	2			
CORRE	LATIO	N OF COs	WITH P	Os and	PSOs										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	РО	8 PO9) P(D10	PO1	.1	PO12	
CO1	н		L												
CO2	М	М	L		L							L			
CO3	М														
CO4	Μ				L							L		М	
CO5	Н	L	L		L									L	

	UNIT I	INTRODUCTION	9
Multip		Dverview-Basic Elements, Instruction Execution, Interru Multicore Organization. Operating system overview-ol ng System.	
	UNIT II	CPU SCHEDULE AND PROCESS	9
Multico	ore and Multit	d scheduling, Operations on processes, Processes and Th hreading, Windows OS - Thread and Symmetric Multi-Pro ions - Linux operating system	
I	UNIT III	CONCURRENCY AND SCHEDULING	9
	ocks – prever	rrency - Mutual Exclusion, Semaphores, Monitors, Rention- avoidance – detection, Scheduling- Types of S	-
ι	UNIT IV	MEMORY MANAGEMENT	9
Hardwa		ent requirements, Partitioning, Paging and Segmentat ol structures, Segmentation with Paging, Linux memory	· · · · · ·
memo	ry managemer	nt.	
	ry managemer UNIT V	TILE SYSTEM INTERFACE AND OPERATION	9
File ma manag	UNIT V anagement – C	FILE SYSTEM INTERFACE AND OPERATION Organization, Directories, File sharing, and Record blocking, anagement and disk scheduling – I/O devices, I/O functions	9 secondary storage
File ma manag	UNIT V anagement – C gement, I/O ma	FILE SYSTEM INTERFACE AND OPERATION Organization, Directories, File sharing, and Record blocking, anagement and disk scheduling – I/O devices, I/O functions	9 secondary storage
File ma manag	UNIT V anagement – C gement, I/O ma uling and Disk o	FILE SYSTEM INTERFACE AND OPERATION Organization, Directories, File sharing, and Record blocking, anagement and disk scheduling – I/O devices, I/O functions	9 secondary storage s, OS design issues, disk
File ma manag schedu TEXTBO	UNIT V anagement – C gement, I/O ma uling and Disk o OOKS:	FILE SYSTEM INTERFACE AND OPERATION Organization, Directories, File sharing, and Record blocking, anagement and disk scheduling – I/O devices, I/O functions	9 secondary storage 5, OS design issues, disk TOTAL: 45 PERIODS
File ma manag schedu TEXTBO	UNIT V anagement – C gement, I/O ma uling and Disk o OOKS: William Stalli 2011.	FILE SYSTEM INTERFACE AND OPERATION Organization, Directories, File sharing, and Record blocking, anagement and disk scheduling – I/O devices, I/O functions cache.	9 secondary storage 5, OS design issues, disk TOTAL: 45 PERIODS Prentice Hall, 7 th Edition
File ma manag schedu TEXTBO 1. 2.	UNIT V anagement – C gement, I/O ma uling and Disk o OOKS: William Stalli 2011. Silberschatz,	FILE SYSTEM INTERFACE AND OPERATION Organization, Directories, File sharing, and Record blocking, anagement and disk scheduling – I/O devices, I/O functions cache.	9 secondary storage 5, OS design issues, disk TOTAL: 45 PERIODS Prentice Hall, 7 th Edition
File ma manag schedu TEXTBO 1. 2.	UNIT V anagement – C gement, I/O ma uling and Disk of OOKS: William Stall 2011. Silberschatz, 2006. ENCE BOOKS: Andrew S. Ta	FILE SYSTEM INTERFACE AND OPERATION Organization, Directories, File sharing, and Record blocking, anagement and disk scheduling – I/O devices, I/O functions cache.	9 secondary storage s, OS design issues, disk TOTAL: 45 PERIODS Prentice Hall, 7 th Edition Wiley India, 7 th Edition
File ma manag schedu TEXTBO 1. 2. REFERI	UNIT V anagement – C gement, I/O ma aling and Disk of OOKS: William Stall 2011. Silberschatz, 2006. ENCE BOOKS: Andrew S. Ta Prentice Hall	FILE SYSTEM INTERFACE AND OPERATION Organization, Directories, File sharing, and Record blocking, anagement and disk scheduling – I/O devices, I/O functions cache. Ings, 'Operating Systems – internals and design principles', Peter Galvin, Greg Gagne 'Operating System Principles', annenbaum & Albert S. Woodhull, 'Operating System Desi	9 secondary storage s, OS design issues, disk TOTAL: 45 PERIODS Prentice Hall, 7 th Edition Wiley India, 7 th Edition
File ma manag schedu 1. 2. REFERI 1.	UNIT V anagement – C gement, I/O ma aling and Disk of OOKS: William Stall 2011. Silberschatz, 2006. ENCE BOOKS: Andrew S. Ta Prentice Hall Andrew S. Ta	FILE SYSTEM INTERFACE AND OPERATION Organization, Directories, File sharing, and Record blocking, anagement and disk scheduling – I/O devices, I/O functions cache. ngs, 'Operating Systems – internals and design principles', Peter Galvin, Greg Gagne 'Operating System Principles', annenbaum & Albert S. Woodhull, 'Operating System Desi , 3 rd Edition, 2006.	9 secondary storage s, OS design issues, disk TOTAL: 45 PERIODS Prentice Hall, 7 th Edition Wiley India, 7 th Edition gn and Implementation'

·													
COL	JRSE CO	DE:			COL	JRSE TIT	LE:			L	Т	Р	С
10	212EE1	03		OBJECT	ORIEN	TED PRO	OGRAM	MING	j	3	0	0	3
COURSE CATEGORY: Specialization													
	PREAMBLE: To understand and development C++ Programming language and mastering in OOPS for real time applications												
PRERE	PREREQUISITE COURSES: NIL												
COURS	COURSE EDUCATIONAL OBJECTIVES :												
•	 To understand Object Oriented Programming concepts and basic characteristics of Java 												
•		•			-	nheritan	ce and i	nterf	aces				
•			•	and use									
•						reads an User Int	-	ICS CI	asses				
•	TO des	agii allu	bullu SI	inple Gi	арпісаі	User int	enaces						
COURS	E OUTO	COMES:											
Upon t	he succ	essful co	ompleti	on of the	e course	e, studer	nts will k	e ab	le to:				
СО	Course Outcomes Knowledge Level (Based on												
Nos.		revised Bloom's Taxonomy)								imy)			
CO1	Explain the fundamentals of object-oriented K2 K2												
CO2			•	of inhe eal time		and int tions	terface	for			КЗ		
CO3	Imple funct		ion of	progra	mming	in C+-	+ and	its			КЗ		
CO4				of virtua neric Pro		ions to iing	impleme	ent			К2		
CO5	Illust	rate the	feature	s of eve	nt drive	n progra	amming				K2		
CORRE	LATION	I OF CO	s WITH I	POs ANI	O PSOs								
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	РО	8 PO	9 PO	10	PO11	PO12
CO1	Н		L										
CO2	Н	Н	М	L	L								
CO3	Н	Н		L								L	М
CO4	Н		М	М	L								L
CO5	Н	М			L							L	L
COURS		ENT :						•			1		
UNI	TI	NTRODU	JCTION	то оор	s							9	
Fundar	UNIT I INTRODUCTION TO OOPS 9 Fundamentals of OOPS – Features of Object Oriented Programming – objects and classes -									– obje	ects	and cla	isses -

Encapsulation- Inheritance - Polymorphism- Control flow – Arrays – Strings – Pointers and Functions

UNIT I	INHERITANCE AND INTERFACES	9					
Object c interface	ce – Super classes- sub classes –Protected members – construct ass – abstract classes and methods- final methods and classes – I , implementing interface, differences between classes and inte s - Object cloning	nterfaces – defining an					
UNIT II	PROGRAMMING IN C++	9					
Constructors and Destructors – Operator Overloading –Virtual Functions and Exception Handling exception hierarchy - Input / Output Basics - Reading and Writing Console							
UNIT I \	MULTITHREADING AND GENERIC PROGRAMMING	9					
Differences between multi-threading and multitasking, thread life cycle, creating threads, synchronizing threads, Inter-thread communication, daemon threads, thread groups. Generic Programming – Generic classes – generic methods – Bounded Types – Restrictions and Limitations.							
UNIT V	EVENT DRIVEN PROGRAMMING	9					
images - event hie	programming - Frame – Components - working with 2D shapes - Us Basics of event handling - event handlers - adapter classes - actions erarchy - Introduction to Swing – layout management - Swing Compo as – Buttons- Check Boxes – Radio Buttons – Lists- choices- Scrollbar Boxes.	- mouse events - AWT onents – Text Fields ,					
		TOTAL: 45 PERIODS					
TEXTBO	DKS:						
 Herbert Schildt, 'Java the Complete Reference', 8th Edition, McGraw Hill Education, 2011. Cay S. Horstmann, Gary Cornell, 'Core Java Volume – I Fundamentals', 9th Edition, Prentice Hall, 2013. 							
REFEREN	CE BOOKS:						
	Paul Deitel, Harvey Deitel, 'Java SE 8 for programmers', 3 rd Edition, P	-					
2. Timothy Budd, 'Understanding Object-Oriented Programming with Java', Updated Edition,							

 Timothy Budd, 'Understanding Object-Oriented Programming with Java', Updated Edition Pearson Education, 2000.

COURSE CODE:	COURSE TITLE:	L	т	Ρ	С				
10212EE104	DATA STRUCTURES AND ALGORITHMS	3	0	0	3				
COURSE CATEGORY: Specialization									

PREAMBLE: This course will impart knowledge in various data structures and analysis of algorithm concepts for different applications.

PREREQUISITE COURSES: Nil

COURSE EDUCATIONAL OBJECTIVES :

- To study various data structure concepts like Stacks, Queues, Linked List, Trees and Files
- To overview the applications of data structures
- To be familiar with utilization of data structure techniques in problem solving
- To have a comprehensive knowledge of data structures and algorithm
- To carry out asymptotic analysis of algorithm

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain user defined data types, linear data structures for solving real world problems.	К2
CO2	Implement modular programs on nonlinear data structures and algorithms for solving engineering problems efficiently	К3
CO3	Illustrate special trees and Hashing Techniques	К2
CO4	Apply searching techniques in graph traversal	К3
CO5	Apply sorting techniques for real world problems	К3

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	L	L									L
CO2	Н	М	М	L	L							L
CO3	Н	М	L		L						L	L
CO4	Н	М	L	L	L							L
CO5	Н	М	L	L	L							L

UNIT I	INTRODUCTION	9						
Implement	n – The Problem Solving – Top down design Strategy – Algorations of algorithms – Program Verification – The efficiency of al Asymptotic Notation – Mathematical Induction – Analysis of Algoration – Analysis of Algoration – Analysis of Algoration – Analysis of Algoratical Induction – Analysis of Alg	gorithms – Algorithmic						
UNIT II	LINEAR DATA STRUCTURES	9						
Lists – Arrays – Linked Representation – Singly Linked List – Doubly linked List – Cursor Based Linked list – Applications of lists – Stacks – Stack ADT – Array Implementation – Applications – Linked List Design – Queue ADT – Implementation – Applications.								
UNIT III	TREES	9						
	Concepts – Binary Trees – Implementation – Tree Traversals – es – AVL trees.	Applications – Binary						
UNIT IV	UNIT IV GRAPHS							
	epts – Traversal – Minimum Spanning Tree – Applications – Net th Algorithm –Topological Sort.	tworks – Single Source						
UNIT V	BACK TRACKING	9						
	al Method – 8 Queens Problem – Sum of Subsets – Graph Coloring Problem – Branch and Bound Method – Travelling Salesman ess							
		TOTAL: 45 PERIODS						
ТЕХТВООК	S:							
	rk Allen Weiss, 'Data Structures and Algorithm Analysis in C' ucation, 2007.	, 2 nd Edition, Pearson						
2. Reema Thareja, 'Data Structures Using C', Oxford Higher Education , 1 st Edition, 2011								
2. Re								
2. Re	BOOKS:							
REFERENCI	BOOKS: taj Sahni, 'Data Structures, Algorithms and Applications in C tion, 2005.	-++', McGraw Hill, 2 ⁿ						

COL	JRSE C	ODE:			COU	IRSE TIT	LE:				L	Т	Ρ	C
10	212EE	105	COMF	UTER N	ETWOR	KS AND	сомм	UNIC	CATION		3	0	0	3
COURSE CATEGORY: Specialization														
		This cour ion and te				-					-		orks	, data
PRERE	QUISI	TE COURS	SES: Data	a Structi	ures									
COURS	SE EDL	JCATIONA	AL OBJE	CTIVES :										
•		l an unde itectures,		-		nental co	oncepts	of co	ompute	r ne	tworki	ng, pro	otoc	ols,
•		expertise red Archit		gn, impl	ement a	ind anal	yze perf	orma	ance pe	rspe	ective (of ISO	OSI	
•	Deal	with the	major is	sues of	the laye	ers of the	e model.							
COURS	SE OU	FCOMES :												
Upon t	he su	ccessful co	ompletio	on of the	e course	e, studer	nts will b	e ab	le to:					
CO Nos.	Course Outcomes Knowledge Level (Based revised Bloom's Taxonor													
CO1	Interpret the architecture and building blocks of Communication network							К2						
CO2	Explain the types of network topology and K2 K2													
CO3	me	nmarize chanisms, ting proto	flow								K	2		
CO4		npare th nsmission	•		of ne	etwork	layer a	nd			K	3		
CO5		porate th ociated pr			of vari	ious lay	er and	its			K	2		
CORRE		ON OF Cos		Os AND	PSOs				_		_	_		_
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	98 P	D 9	PO10	PO:	L1	PO1
CO1	Н													L
CO2	Н	М		L										Μ
CO3	Н	Н	М	L								L		Μ
CO4	Н	Н	L	L								L		Μ
CO5	Н	М	Μ	L								L		Μ
COURS	SE COI	NTENT :												
UNI	ГІ	INTRODU	JCTION									9		
Compu	uter	networks	and	distribu	ted sy	vstems	Classifie	catio	ns, ne	etwo	ork st	ructur	es,	Dat

Computer networks and distributed systems Classifications, network structures, Data communication, Data representation and Data flow, Connection Topology, Protocols and Standards, OSI model, Transmission Media

UNIT II	NETWORK TOPOLOGY TYPES	9					
	I, Wireless LAN, Virtual LAN-Techniques for Bandwidth utili division, Time division and Wave division, Concepts on spread spe						
UNIT III	DATA LINK LAYER	9					
Control and	tals of Error Detection and Correction, Block coding, Hammir d Error control protocols - Stop and Wait, Go-back–N ARQ, Selecti iggybacking, Random Access, Multiple access protocols - Pure A CDMA/CA	ve Repeat ARQ, Sliding					
UNIT IV	NETWORK & TRANSPORT LAYER	9					
Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and							
User Data	very, Forwarding and Unicast Routing protocols. Process to Pr gram Protocol, Transmission Control Protocol, SCTP Congestic oS improving techniques - Leaky Bucket and Token Bucket algorith	on Control; Quality of					
UNIT V	APPLICATION LAYER	9					
DNS, DDNS	, TELNET, EMAIL, FTP, WWW, HTTP, SNMP, Bluetooth, Firewalls.						
		TOTAL: 45 PERIODS					
ТЕХТВООК	S:						
1. Tai	nenbaum, 'Computer Networks', Pearson Education, 5 th Edition, 2	013.					
2. William Stallings 'Data and Computer Communications' Pearson Education India, 2013.							
REFERENC	BOOKS:						
	Iman, R., Kaufman, C., and Speciner, M. 'Network Security: Priva olic World' Pearson Education India, 2016.	te Communication in a					
	2. Stevens, W. R., Fenner, B., and Rudoff, A. M. 'UNIX Network Programming' Volume 1.						

2. Stevens, W. R., Fenner, B., and Rudoff, A. M. 'UNIX Network Programming' Volume 1, SMIT-SMU, 2018.

COURSE CODE:	COURSE TITLE:
10212EE106	ARTIFICIAL INTELLIGENCE

L	Т	Ρ	С
З	0	0	3

COURSE CATEGORY: Specialization

PREAMBLE : This course will make the students to understand, analyse and design an Artificial Intelligence of most advanced fields which involves use of Mathematics, Statistics, Information Technology and Information Sciences in discovering new information and knowledge from large databases and optimize Human effort overall.

PREREQUISITE COURSES: Data Structures and algorithm

COURSE EDUCATIONAL OBJECTIVES :

- To understand the various characteristics of Intelligent agents
- To learn the different search strategies in AI
- To learn to represent knowledge in solving AI problems
- To understand the different ways of designing software agents
- To know about the various applications of AI.

COURSE OUTCOMES :

CO5

Н

Μ

L

Upon the successful completion of the course, students will be able to:

CO Nos.		Course Outcomes								Knowledge Level (Based on revised Bloom's Taxonomy)				
CO1		Interpret appropriate search algorithms of AI for real world application								К2				
CO2		Explain the various problem solving methods using first order and predicate logic							К2					
CO3		Develop the radiate Logic and knowledge representation of solve a given problem								КЗ				
CO4		Develop the software agents for solving a given problem							К3					
CO5		se app igence.	lication	s for	NLP th	nat use	Artific	ial		К3				
CORRE		I OF CO	5 WITH I	POs ANI	O PSOs									
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	РС	8 PO9	PO10	PO11	PO12		
CO1	Н	М			L						L	М		
CO2	Н	М	М	М	М						L	М		
CO3	Н	М			М						L	М		
CO4	Н	М	L		L						L	М		
1														

Μ

н

L

UNIT I	INTRODUCTION	9
	on to AI - Problem-Solving Agents - Searching for Solutions- Chara pical Intelligent Agents – Problem Solving Approach to Typical AI p	-
UNIT II	PROBLEM SOLVING METHODS	9
Algorithms Satisfactior	olving Methods - Search Strategies- Uninformed - Informed - He and Optimization Problems - Searching with Partial Obse n Problems – Constraint Propagation - Backtracking Search - G n Games – Alpha - Beta Pruning - Stochastic Games	ervations - Constrain
UNIT III	KNOWLEDGE REPRESENTATION	9
Chaining – Objects –	r Predicate Logic – Prolog Programming – Unification – Forwa - Resolution – Knowledge Representation - Ontological Engin Events - Mental Events and Mental Objects - Reasoning Sys with Default Information	eering-Categories and
UNIT IV	SOFTWARE AGENTS	9
	re for Intelligent Agents – Agent communication – Negotiat ation among Agents – Trust and Reputation in Multi-agent systems	
	APPLICATIONS	9
AI applicat	L tions – Language Models – Information Retrieval- Information Processing - Machine Translation – Speech Recognition – Robot –	Extraction – Natura Hardware – Perception
AI applicat Language F – Planning	tions – Language Models – Information Retrieval- Information Processing - Machine Translation – Speech Recognition – Robot – – Moving	Extraction – Natura
AI applicat Language F – Planning TEXTBOOK	tions – Language Models – Information Retrieval- Information Processing - Machine Translation – Speech Recognition – Robot – – Moving	Extraction – Natura Hardware – Perceptio TOTAL: 45 PERIOD
AI applicat Language F – Planning TEXTBOOK 1. S.	tions – Language Models – Information Retrieval- Information Processing - Machine Translation – Speech Recognition – Robot – – Moving	Extraction – Natura Hardware – Perceptio TOTAL: 45 PERIOD
AI applicat Language F – Planning TEXTBOOK 1. S. Edi 2. I.B	tions – Language Models – Information Retrieval- Information Processing - Machine Translation – Speech Recognition – Robot – – Moving S: Russell and P. Norvig, 'Artificial Intelligence: A Modern Appro	TOTAL: 45 PERIOD ach' Prentice Hall, 3
AI applicat Language F – Planning TEXTBOOK 1. S. Edi 2. I.B	tions – Language Models – Information Retrieval- Information Processing - Machine Translation – Speech Recognition – Robot – – Moving S: Russell and P. Norvig, 'Artificial Intelligence: A Modern Appro ition, 2009. ratko 'Prolog: Programming for Artificial Intelligence', 4 th Ed ucational Publishers Inc., 2011.	TOTAL: 45 PERIODS
AI applicat Language F – Planning TEXTBOOK 1. S. Edi 2. I.B Edi REFERENCI	tions – Language Models – Information Retrieval- Information Processing - Machine Translation – Speech Recognition – Robot – – Moving S: Russell and P. Norvig, 'Artificial Intelligence: A Modern Appro ition, 2009. ratko 'Prolog: Programming for Artificial Intelligence', 4 th Ed ucational Publishers Inc., 2011.	ach' Prentice Hall, 3 th
AI applicat Language F – Planning TEXTBOOK 1. S. Edi 2. I.Bi Edi REFERENCI	tions – Language Models – Information Retrieval- Information Processing - Machine Translation – Speech Recognition – Robot – – Moving S: Russell and P. Norvig, 'Artificial Intelligence: A Modern Appro ition, 2009. ratko 'Prolog: Programming for Artificial Intelligence', 4 th Ed ucational Publishers Inc., 2011. E BOOKS: Tim Jones, 'Artificial Intelligence: A Systems Approach (Compute	ach' Prentice Hall, 3 th
AI applicat Language F – Planning TEXTBOOK 1. S. Edi 2. I.B Edi REFERENCI 1. M. Bai 2. Nil 3. Wi	tions – Language Models – Information Retrieval- Information Processing - Machine Translation – Speech Recognition – Robot – – Moving S: Russell and P. Norvig, 'Artificial Intelligence: A Modern Appro ition, 2009. ratko 'Prolog: Programming for Artificial Intelligence', 4 th Ed ucational Publishers Inc., 2011. E BOOKS: Tim Jones, 'Artificial Intelligence: A Systems Approach (Compute rtlett Publishers, Inc.; 1 st Edition, 2008	ach' Prentice Hall, 3 th dition, Addison-Wesle er Science)', Jones an

Minor Degree in Electric Vehicle Technology

List of Courses	(18 Credits)
------------------------	--------------

SI.No	Course Code	Lecture Courses	L	т	Р	с
1	10213EE131	Charging Station	3	0	0	3
2	10213EE132	Battery Management System	3	0	0	3
3	10213EE133	Electric Propulsion System and Control	3	0	0	3
4	10213EE134	Hybrid Electric Vehicle Technologies	3	0	0	3
5	10213EE135	Energy Storage Systems and Control	3	0	0	3
6	10213EE136	Modelling and Simulation of EV	2	0	2	3

CC	OURSI	E CODE	:			COL	IRSE TI	TLE:			L	Т	Р	С
1	.0213	EE131				CHARG	ING ST	ATION			3	0	0	3
DURSE	CAT	EGORY	: MINO	R										
EAME	BLE: 1	This co	urse fo	cuses o	on the	develo	pment	of ele	ctric v	ehicle	chargir	ng stati	ons ba	sed o
onvent	ional	and re	newab	le ener	gy app	licatior	ns and i	ssues a	issocia	ted wit	h integ	gration		
REREQ	UISIT	E COU	RSES:	Basic El	ectrica	ll & Ele	ctronic	s Engin	eering					
	-	CATIO	_		-									
-		s of the												
 Introduce about charging stations for electric vehicles. Impart knowledge about charging methodologies and grid integration issues. 														
 Impart knowledge about charging methodologies and grid integration issues. Explain about conventional and renewable energy based charging methods. 														
				entiona	ai and i	renewa	able en	ergy ba	isea cr	larging	metho	as.		
OURSE		succes		moloti	an of ti		rco ctu	donts	will bo	able to				
		JULLES		inpietio			30, 310	uents V	will be			nowled	lge Lev	el
CO Nos.				(Course	Outco	mes						n revis	
1405.			. h								Blo	om's T	axonoi	ny)
CO1 Outline about conomic ar					V charging stations, site selection issues and sis.						К2			
CO2	E	xplain	about	equipment selection guidelines needed to						ed to	К2			
02		esign c												
CO3		ummar							tric v	ehicle	К2			
		atterie: iscuss				-			n issu	es of				
CO4		harging			standa			giatio	1 1350	23 01	К2			
CO5	E	xplain a	about r	enewable energy based charging stations.						К2				
ORREL	ATIO	N OF C	Os WIT	H POs	AND P	SOs								
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
CO1	Η	М	L			L	М				L	М	М	
CO2	Н	М	L			L	М				L	М	М	
CO3	Η	М					М				L	М	М	<u> </u>
CO4	H	M	L			L	M	L			L	M	M	
CO5	Н	Μ					Μ				L	Μ	Μ	L
OURSE	CON	TENT:												
	ΙΤΙ		INTRO	DUCTI	ON							9		

and private charging stations.

UNIT II	EQUIPMENT SELECTION	9					
distribution transf	- Selection of AC & DC charger - AC & DC pile c ormer – distribution board – HT equipment – HT a fast charging design – difference between slow and	nd LT cables – relay selection –					
UNIT III	EV CHARGING STRATEGIES	9					
Traditional charging methods: trickle, pulse charging - improvement of CCCV charging - Wireless power Transfer- Far field Strategies: micro wave, laser radiation - Near field strategies: inductive, capacitive, hybrid charging – fast charging - fleet management							
UNIT IV	CHARGING STATION INTEGRATION	9					
Types of EV charging stations – EV charging standards – Levels of charging – Vehicle to Grid (V2G), Vehicle to Home (V2H) technologies and its challenges – Impact of EV on grid – congestion in power lines – Vehicle to Vehicle (V2V) charging – Battery swapping.							
UNIT V	RENEWABLE ENERGY CHARGING	9					
	electric vehicles – wind charging stations - power ra mistry and rating – future trends.	ating selection – charging issues					
		TOTAL: 45 PERIODS					
TEXT BOOKS:							
	Ion-Conventional Sources Of Energy', Khanna Publis	hers, 2006.					
 Rai G D, 'N Kothari P 	Ion-Conventional Sources Of Energy', Khanna Publis , K C Singal and Rakesh Ranjan, 'Renewable I ;ies', PHI Pvt. Ltd., New Delhi, 2008.						
 Rai G D, 'N Kothari P 	, K C Singal and Rakesh Ranjan, 'Renewable I gies', PHI Pvt. Ltd., New Delhi, 2008.						
 Rai G D, 'N Kothari P Technolog REFERENCE BOOK Sukhatme 	, K C Singal and Rakesh Ranjan, 'Renewable I gies', PHI Pvt. Ltd., New Delhi, 2008.	Energy Sources and Emerging					
 Rai G D, ^(h) Kothari P Technolog REFERENCE BOOK Sukhatme Tata McG 	, K C Singal and Rakesh Ranjan, 'Renewable I gies', PHI Pvt. Ltd., New Delhi, 2008. S: S P and Nayak J K, 'Solar Energy - Principles of Tl raw Hill, 2008. ith and Yogi Goswami D, 'Handbook of Energy Effi	Energy Sources and Emerging					
 Rai G D, ^(h) Kothari P Technolog REFERENCE BOOK Sukhatme Tata McG Frank Kre CRC Press 	, K C Singal and Rakesh Ranjan, 'Renewable I gies', PHI Pvt. Ltd., New Delhi, 2008. S: S P and Nayak J K, 'Solar Energy - Principles of Tl raw Hill, 2008. ith and Yogi Goswami D, 'Handbook of Energy Effi	Energy Sources and Emerging					

COU	RSE CODE:	COURSE TITLE:	L	Т	Р	C	
102	213EE132	BATTERY MANAGEMENT SYSTEM	3	0	0	3	
COURSE C	ATEGORY: MINOR	3					
REAMBL	E: This course dea	Is with basics of batteries, working principle,	safety s	tandard	s, testin	ig an	
ecycling	of batteries.						
PREREQU	ISITE COURSES: Ba	asic Electrical & Electronics Engineering					
RELATED	COURSES: EV Batt	eries & Charging System					
OURSE E	DUCATIONAL OB	ECTIVES:					
-	tives of the course						
	o learn about the b equirements	pasics concepts of Battery Management Syste	ms (BN	IS) and i	ťs		
 To understand the methods of battery state of charge and health estimation 							
• To	o know basic conce	epts and types of cell voltage balancing of bat	tery cel	ls			
• To	o know about ther	mal management, safety aspects and standar	ds				
• To	o understand the o	oncepts of battery testing, disposal and recyc	ling.				
COURSE C	OUTCOMES :						
Upon	the successful cor	npletion of the course, students will be able to	o:				
CO Nos.		Course Outcomes	(Based o	lge Leve n revise axonom	d	
CO1	Identify a BMS r on its applicatio	equired for a particular battery type based n		K	2		
	Estimate the re	maining charge, voltage, power can be					
CO2	delivered by a b	attery, battery health, remaining useful life		К	3		
	using various m						
CO3	Solve the proble battery cell leve	ems related to cell voltage balancing in I		К	3		
CO4		ety aspects and the concept of thermal		к	2		

[CO4	Describe the safety aspects and the concept of thermal	К2
	04	management of batteries	ΝZ
	CO5	Explain the battery testing methods, disposal and recycling	К2
	005	issues of batteries	ΝZ

CORRELATION OF COs WITH POs AND PSOs

										-				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	М								L	М	Н	L
CO2	Н	Н	М								L	М	Н	L
CO3	н	н	М								L	М	Н	L
CO4	Н	М									L	М	Н	L
CO5	Н	М					М				L	М	Н	L

UNIT I	INTRODUCTION	9
Battery pack s - thermal cor	General Battery Management System (BMS) - requirements - fur ensing: voltage-current-temperature - high voltage contactor con trol- charge and discharge control - protection and interfacing wer estimation.	trol -isolation sensing
UNIT II	STATE OF CHARGE AND STATE OF HEALTH ESTIMATION	9
EMF measure	of Charge (SoC) and State of Health (SoH) estimation; resistive, and ment- over potential dependence- Total capacity- Equivalent Ser corrosion on positive, negative electrode – power, capacity fading	ries Resistance(ESR) -
UNIT III	CELL BALANCING	9
balance set p	balancing -causes of imbalance - passive cell balancing- drawb bint- real time balance- capacitor, inductor, transformer, convert cell balancing techniques – cell bypass, cell to cell, cell to pack, p g.	er, voltage multiplie
UNIT IV	THERMAL MANAGEMENT & SAFETY ASPECTS	9
analysis of co	al management - Thermal Runway - Passive cooling - Active coling system - Causes of battery explosions - regulations and Sates - Codes and Standards - Safe handling of Lithium Batteries.	-
UNIT V	BATTERY TESTING, DISPOSAL & RECYCLING	9
and second u	attery testing - selection of battery - limitations of energy storage se of batteries - leakage-rupture - gas generation in batteries - H methods of recycling - General recycling issues .	-
		TOTAL: 45 PERIODS
TEXT BOOKS:		
	Christopher D., and Chao-Yang Wang. 'Battery Systems Engine	ering'. John Wiley 8
Sons, 2. G-A.		
	DOKS:	
REFERENCE B	iehne, 'Battery Technology Handbook', Marcel Dekker, NYC, 2003	•
1. H.A.H	Larminie and John Lowry, 'Electric Vehicle Technology Explained',	John Wiley, 2003.
1. H. A. H 2. James	Larminie and John Lowry, 'Electric Vehicle Technology Explained', den and T. S. Reddy, 'Handbook of Batteries',' 3 rd Edition, McGraw-	
 H. A. H James D. Line D. A. J 		-Hill, 2002.
 H. A. H. James D. Line D. A. J Engine 	den and T. S. Reddy, 'Handbook of Batteries',' 3 rd Edition, McGraw . Rand, R. Woods, and R. M. Dell, 'Batteries for Electric Vehicles', S eers, Warrendale, PA, 2003. e, Arno, and Jan Diekmann. 'Recycling of Lithium-Ion ba	Hill, 2002. Society of Automotive

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10213EE133	ELECTRIC PROPULSION SYSTEM AND CONTROL	3	0	0	3

COURSE CATEGORY: MINOR

PREAMBLE: This course aims in providing a guide to control of both AC and DC motors with a focus on its application to electric vehicle. It provides various field oriented control, Speed control and it also covers PWM techniques & inverters.

PREREQUISITE COURSES: Basic Electrical & Electronics Engineering

RELATED COURSES: Modelling and Simulation Of EV

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Understand the requirement of EV Motors
- Capability to analyze the Induction Motor characteristics and speed control methods
- Impart the knowledge of different types of sensor and their operations.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the requirement of EV motors	К2
CO2	Explain the suitability of electric motor & their control	К2
CO3	Illustrate the speed control of Induction motor	К2
CO4	Outline the PWM techniques of Inverter for Induction motor.	К2
CO5	Summarize different sensors and sensor less operation of motor.	К2

CORRELATION OF COs AND POs

CO1 H M L Image: Model Image: Model	L
CO3 H M L L M H	L
	L
CO4 H M L L M H	L
CO5 H M L L M H	L

COURSE CONTENT:		
UNIT I	MOTORS FOR EV AND ITS CHARACTERISTICS	9
•	V motors- Comparison of EV motors-Basics of Motor dynamics-Field Weakening Control-Four quadra	· · ·
UNIT II	DC MOTOR DYNAMICS & CONTROL	9
	rol-Speed Control Loop Dynamical System Control- Iller-Selecting PI Gain for Speed Controller	Gain & Phase Margins-PD
UNIT III	INDUCTION MOTOR	9
	Field- Basics of Induction motor- Speed &Torque (nt (double cage rotor)- line starting	Curve Leakage inductance-
UNIT IV	INDUCTION MOTOR SPEED CONTROL	9
•	nt (double cage rotor)- line starting- Rotor Field ori eld Weakening Control- Variable Voltage Variable Fre	
UNIT V	PWM and Inverter	9
Converters- Hall cu Estimator	rrent sensors and current sampling- Voltage Model	Estimator- Current Model
TEXT BOOKS:		
1. JamesLarmi 2003	nie and John Lowry, 'Electric Vehicle Technology Exp	lained' John Wiley &Sons,
2. Iqbal Husair	n, 'Electric and Hybrid Vehicles-Design Fundamentals',	CRC Press, 2003
REFERENCE BOOKS		
1. Mehrdad Eł	sani, "Modern Electric, Hybrid Electric and Fuel Cell \	/ehicles", CRC Press, 2005
 K Wang He Francis Grou 	e Nam 'AC Motor Control & Electrical Vehicle Appl 	lication', CR Press, Taylor8
3. C.C Chan, K York 2001.	.T Chau 'Modern Electric Vehicle Technology', Oxford	d University Press Inc., New

CO	URSE CODE:	COURSE TITLE:	L	Т	Р	C
10	0213EE134	HYBRID ELECTRIC VEHICLE TECHNOLOGIES	3	0	0	3
COURSE	CATEGORY: MINC	DRY: MINOR Se course aims in providing the fundamental knowledge on hybrid electric vehicles. SCOURSES: Basic Electrical & Electronics Engineering, Basic Mechanical & Construct SES: Modelling and Simulation of EV TIONAL OBJECTIVES: f the course are to make the students, view of the vehicle propulsion principle rstanding of the electric vehicles and its power trains damental knowledge on hybrid electric vehicles orate knowledge on regenerative braking halytical knowledge on advantages of electric vehicles on environment MES : ccessful completion of the course, students will be able to:				
			-		ctric ve	hicle
REREQ Engineer		Basic Electrical & Electronics Engineering, Basic	Mech	anical 8	Constr	uctio
RELATED	O COURSES: Model	ling and Simulation of EV				
The obje	ectives of the cours	e are to make the students,				
• /	An overview of the	vehicle propulsion principle				
• ,	An understanding of	of the electric vehicles and its power trains				
• ·	The fundamental k	nowledge on hybrid electric vehicles				
• /	An elaborate know	ledge on regenerative braking				
•	Broad analytical kn	owledge on advantages of electric vehicles on	enviro	nment		
	OUTCOMES :					
		mpletion of the course, students will be able to	D:			
CO Nos.		Course Outcomes	(on revis	ed
CO1	Enumerate the p	rinciple of vehicle propulsion and braking.		I	<2	
CO2	Explain the struct	ure of an electric vehicle.		I	<2	
CO3	Illustrate the wor	king principle of a Hybrid Electric Vehicle.		I	<2	
CO4		e the problems in regenerative braking.		I	(3	
CO5	Articulate the environment.	effects of electric and hybrid vehicles on		ł	<2	

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	L								L	М	Н	L
CO2	Н	М	L								L	М	Н	L
CO3	Н	М	L								L	М	Н	L
CO4	Н	М	М								L	М	Н	L
CO5	Н	М	L								L	М	Н	L

UNIT I	FUNDAMENTALS OF VEHICLE PROPULSION	9
Tractive Effort a	tion of Vehicle Movement- Vehicle Resistance- Dynar nd Vehicle Speed- Vehicle Power Plant and Transmiss perating Fuel Economy- Brake Performance	-
UNIT II	ELECTRIC VEHICLE& PROPULSION SYSTEMS	9
Transmission Re Consumption- P	of EVs- Performance of EVs- Traction Motor Character equirement- Vehicle Performance- Tractive Effort in rinciple of Operation and Performance-DC Motor Driv net BLDC Motor Drives-SRM Drives	n Normal Driving- Energ
UNIT III	HYBRID ELECTRIC VEHICLES	9
	Vs-Series & Parallel HEVs-Advantages & Disadvantages- '-Hybrid Drivetrains-sizing of components-rated vehicle v	
UNIT IV	REGENERATIVE BRAKING	9
versus Braking	Consumed in Urban Driving- Braking Energy versus Vel Power- Braking Energy versus Braking Power- Brak te- Braking Energy on Front and Rear Ayles- Brake Sy	ing Energy versus Vehicle
versus Braking Deceleration Rat		ing Energy versus Vehicle
versus Braking Deceleration Rat	Power- Braking Energy versus Braking Power- Brak te- Braking Energy on Front and Rear Axles- Brake Sy	ing Energy versus Vehicle
versus Braking Deceleration Rat Parallel Hybrid B UNIT V Vehicle Pollution	Power- Braking Energy versus Braking Power- Brak te- Braking Energy on Front and Rear Axles- Brake Sy raking System- Fully Controllable Hybrid Brake System	ing Energy versus Vehicle stem of EV, HEV, and FCV 9 alysis- Vehicle Pollution in
versus Braking Deceleration Rat Parallel Hybrid B UNIT V Vehicle Pollution Context- Alterna	Power- Braking Energy versus Braking Power- Brak te- Braking Energy on Front and Rear Axles- Brake Sy raking System- Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT n: the Effects- Vehicles Pollution: a Quantitative An	ing Energy versus Vehicle stem of EV, HEV, and FCV 9 alysis- Vehicle Pollution in ng Sustainable Energy with
versus Braking Deceleration Rat Parallel Hybrid B UNIT V Vehicle Pollution Context- Alterna	Power- Braking Energy versus Braking Power- Brak te- Braking Energy on Front and Rear Axles- Brake Sy raking System- Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT n: the Effects- Vehicles Pollution: a Quantitative An	ing Energy versus Vehicle stem of EV, HEV, and FCV 9 alysis- Vehicle Pollution in
versus Braking Deceleration Rat Parallel Hybrid B UNIT V Vehicle Pollution Context- Alterna Fuelled Vehicles TEXT BOOKS: 1. Husain I.	Power- Braking Energy versus Braking Power- Brak te- Braking Energy on Front and Rear Axles- Brake Sy raking System- Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT n: the Effects- Vehicles Pollution: a Quantitative An ative and Sustainable Energy Used via the Grid- Usir 'Electric and Hybrid Vehicles: Design Fundamentals'. CR , James, and John Lowry. 'Electric Vehicle Technology Ex-	ing Energy versus Vehicle stem of EV, HEV, and FCV 9 alysis- Vehicle Pollution in ng Sustainable Energy with TOTAL: 45 PERIODS C Press; 2011.
versus Braking Deceleration Rat Parallel Hybrid B UNIT V Vehicle Pollution Context- Alterna Fuelled Vehicles TEXT BOOKS: 1. Husain I. 2. Larminie	Power- Braking Energy versus Braking Power- Brak te- Braking Energy on Front and Rear Axles- Brake Sy raking System- Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT n: the Effects- Vehicles Pollution: a Quantitative An ative and Sustainable Energy Used via the Grid- Usir 'Electric and Hybrid Vehicles: Design Fundamentals'. CR , James, and John Lowry. 'Electric Vehicle Technology Ex 3.	ing Energy versus Vehiclestem of EV, HEV, and FCV 9 alysis- Vehicle Pollution in ng Sustainable Energy with TOTAL: 45 PERIODS C Press; 2011.
versus Braking Deceleration Rat Parallel Hybrid B UNIT V Vehicle Pollution Context- Alterna Fuelled Vehicles TEXT BOOKS: 1. Husain I. 2. Larminie Ltd, 2003 REFERENCE BOO 1. Ehsani, N	Power- Braking Energy versus Braking Power- Brak te- Braking Energy on Front and Rear Axles- Brake Sy raking System- Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT n: the Effects- Vehicles Pollution: a Quantitative An ative and Sustainable Energy Used via the Grid- Usir 'Electric and Hybrid Vehicles: Design Fundamentals'. CR , James, and John Lowry. 'Electric Vehicle Technology Ex 3.	ing Energy versus Vehicl stem of EV, HEV, and FCV 9 alysis- Vehicle Pollution i ng Sustainable Energy wit TOTAL: 45 PERIODS C Press; 2011. cplained' John Wiley & Sons
versus Braking Deceleration Rat Parallel Hybrid B UNIT V Vehicle Pollution Context- Alterna Fuelled Vehicles TEXT BOOKS: 1. Husain I. 2. Larminie Ltd, 2003 REFERENCE BOO 1. Ehsani, N Vehicles	Power- Braking Energy versus Braking Power- Brak te- Braking Energy on Front and Rear Axles- Brake Sy raking System- Fully Controllable Hybrid Brake System ELECTRIC VEHICLES & ENVIRONMENT n: the Effects- Vehicles Pollution: a Quantitative An ative and Sustainable Energy Used via the Grid- Usir 'Electric and Hybrid Vehicles: Design Fundamentals'. CR , James, and John Lowry. 'Electric Vehicle Technology Ex- 3. KS: Mehrdad, YiminGao, and Ali Emadi. 'Modern Electric, H	ing Energy versus Vehicl stem of EV, HEV, and FCV 9 alysis- Vehicle Pollution i ng Sustainable Energy wit TOTAL: 45 PERIODS C Press; 2011. cplained' John Wiley & Sons

COURSE	E CODE:	COURSE TITLE:		L	Т	Р	С					
10213	EE135	ENERGY STORAGE SYSTEMS AND CONTROL		3	0	0	3					
COURSE CA	ATEGORY: N	/INOR										
		se aims in providing the fundamental knowledge c s, Battery modelling, Battery testing and Battery Man					tem,					
PREREQUI	SITE COURS	ES: Basic Electrical & Electronics Engineering										
RELATED COURSES: Battery Management System												
COURSE EDUCATIONAL OBJECTIVES:												
The object	ives of the c	course are to,										
• Pro	ovide the ba	sic concepts of Energy Storage systems										
• Im	part fundan	nental knowledge on battery characteristics & param	eters									
• Un	derstand ov	verview of different types of battery										
• Un	derstand th	e battery testing, disposal and recycling.										
COURSE O	UTCOMES :											
Upon t	he successf	ul completion of the course, students will be able to:										
CO Nos.		Course Outcomes	Know on	rev	-	loom's						
CO1	Discuss abo	ut the types of energy storage system.			K2							
CO2	Describe about the battery characteristic & parameters.				К2							
		concepts of battery management system and pattery pack.			К3							
CO4 3	Summarize	the different types of batteries.			K2							
CO5	Explain abo	ut the battery testing, disposal and recycling.			К2							
							_					

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	L								L	М	Н	L
CO2	Н	М	L								L	М	Н	L
CO3	Н	М	М								L	М	Н	L
CO4	Н	М	L								L	Μ	Н	L
CO5	Н	М	L				L				L	М	Н	L

	rent:	
UNIT I	ENERGY STORAGE SYSTEM	9
	d Acid Batter- Nickel based batteries- Sodium based batteries- Lit	
	/- Metal Air Battery-Zinc Chloride battery- Ultra capacitors- Fly	••• •
	ulic Energy Storage System- Comparison of different Energy Stor	age System Suggester
reading: Study	of different types of batteries	
UNIT II	BATTERY CHARACTERISTICS & PARAMETERS	9
Cells and Bat	teries- conversion of chemical energy to electrical energy- B	Battery Specifications
Variables to	characterize battery operating conditions and Specifications to	characterize batter
nominal and r	naximum characteristics- Efficiency of batteries- Electrical parame	eters Heat generation
Battery design	-Performance criteria for Electric vehicles batteries- Vehicle prop	oulsion factors- Powe
and energy re	quirements of batteries- Meeting battery performance criteria	
UNIT III	BATTERY MODELLING	9
General appr	oach to modelling batteries- Model of a rechargeable Li-ion	battery-Model of
rechargeable	NiCd battery- Parameterization of the NiCd battery model	
UNIT IV	9	
Selection of	battery for EVs & HEVs- Traction Battery Pack design-Req	uirement of Batter
Monitoring		
UNIT V	BATTERY TESTING, DISPOSAL & RECYCLING	9
Chemical &	structure material properties for cell safety and battery des	sign- battery testing
limitations for	transport and storage of cells and batteries- Recycling- dispos	sal and second use o
	eral recycling issues -Methods of recycling of EV batteries	
		TOTAL: 45 PERIOD
TEXT BOOKS:		
1. Ibrahi	m Dinçer, Halil S. Hamut and Nader Javani, 'Thermal Manageme	ent of Electric Vehicl
	y Systems', John Wiley& Sons Ltd., 2016.	
	Mi, AbulMasrur & David Wenzhong Gao, 'Hybrid Electric	c Vehicle- Principle
	lications with Practical Properties', Wiley, 2011.	c venicie- rincipie
a Aht	incations with Fractical Froperties, whey, 2011.	
REFERENCE B	DOKS:	
	Larminie, John Lowry, 'Electric Vehicle Technology Explained', J	ohn Wiley &Sons Lto
1. James		
1. James 2003.		
2003.	istoia, J.P. Wiaux, S.P. Wolsky, 'Used Battery Collecti	ion and Recycling
2003. 2. G. P	istoia, J.P. Wiaux, S.P. Wolsky, 'Used Battery Collecti er, 2001. (ISBN: 0-444-50562-8)	ion and Recycling
2003. 2. G. P Elsevi	er, 2001. (ISBN: 0-444-50562-8)	
2003. 2. G. P Elsevi 3. T R		

COURSE CODE:	COURSE TITLE:	L	Т	Ρ	С
10213EE136	MODELLING AND SIMULATION OF EV	2	0	2	3

COURSE CATEGORY: MINOR

PREAMBLE: This course aims in providing the Knowledge on Modelling and Simulation level of Electric Vehicle.

PREREQUISITE COURSES: Basic Electrical & Electronics Engineering

RELATED COURSES: Hybrid Electric Vehicle Technologies, Battery Management System

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Impart fundamental knowledge on technical parameters of batteries, battery charger, types of fuel cells.
- Impart analytical knowledge on modelling and Simulation of Hybrid Electric Vehicle

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Elaborate various technical parameters of batteries	К2
CO2	Compare types of batteries used for EV applications.	К2
CO3	Develop battery charger for an EV	КЗ
CO4	Interpret the applications of super capacitors for appropriate storage systems.	К2
CO5	Classify the types of fuel cells	К2

CORRELATION OF COS WITH POS AND PSOs

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	М	L	М						М	М	Н	М
CO2	Н	Н	М	L	М						М	М	Н	М
CO3	Н	Н	М	L							М	М	Н	М
CO4	Н	Н	М	L	L						М	М	Н	М
CO5	Н	М	L								М	М	Н	М
	•	•												

UNI	ITI	MODELLING OF VEHICLE PERFORMANCE PARAMETER	6
	-	icle Acceleration - Acceleration performance parameters- mod poter- modeling the acceleration of a small car.	eling the acceleration of
UNI	тш	MODELLING AND SIMULATION OF HYBRID AND ELECTRIC VEHICLES	15
force- / modell	Acceler ling of l	le Modelling - Tractive Effort- Rolling resistance force- Aerodyr ation force- Total tractive effort- Modelling Electric Vehicle Ran pattery electric vehicles- Constant velocity range modelling-Ran ge of Electric vehicles.	ge -Driving cycles-Range
UNI	тш	DRIVETRAIN CHARACTERISTICS	15
	-	d Characteristics of EV Power trains Components - Electrics - Battery Performance Characteristics-Transmission and Drive	
UNI	ΤΙν	ENERGY MANAGEMENT	15
		lysis of Electric Vehicles- Simplified Handling Models Energy	
Manag	gement ization-	- Power/Energy Management Controllers – Rule Based Based Control Strategies Simulation study – Energy Manager	d Control Strategies
Manag Optimi	gement ization- es.	- Power/Energy Management Controllers – Rule Based	d Control Strategies
Manag Optimi vehicle UNI Contro Implen	gement ization- es. T V ol of Ele	 Power/Energy Management Controllers – Rule Based Based Control Strategies Simulation study – Energy Manager FUEL CELLS ctric Vehicle Dynamics - Fundamentals of Vehicle Dynamic Cor on on Electric Vehicles – Case Studies- Rechargeable Batte 	d Control Strategies ment control of electric 9 ntrol (VDC) Systems-VD0
Manag Optimi vehicle UNI Contro Implen	gement ization- es. T V I of Ele nentation	 Power/Energy Management Controllers – Rule Based Based Control Strategies Simulation study – Energy Manager FUEL CELLS ctric Vehicle Dynamics - Fundamentals of Vehicle Dynamic Cor on on Electric Vehicles – Case Studies- Rechargeable Batte 	d Control Strategies ment control of electri 9 ntrol (VDC) Systems-VD0 ry vehicles, Fuel Cel
Manag Optimi vehicle UNI Contro Implen	ement ization- es. T V I of Ele nentationed Bus.	 Power/Energy Management Controllers – Rule Based Based Control Strategies Simulation study – Energy Manager FUEL CELLS ctric Vehicle Dynamics - Fundamentals of Vehicle Dynamic Cor on on Electric Vehicles – Case Studies- Rechargeable Batte 	d Control Strategies ment control of electri 9 ntrol (VDC) Systems-VD0 ry vehicles, Fuel Ce
Manag Optimi vehicle UNI Contro Implen Powere TEXT B	ement ization- es. T V ol of Ele nentationed Bus. GOOKS: Amir	 Power/Energy Management Controllers – Rule Based Based Control Strategies Simulation study – Energy Manager FUEL CELLS ctric Vehicle Dynamics - Fundamentals of Vehicle Dynamic Cor on on Electric Vehicles – Case Studies- Rechargeable Batte 	d Control Strategies ment control of electri 9 ntrol (VDC) Systems-VD0 ry vehicles, Fuel Cel TOTAL: 60 PERIODS and Hybrid Vehicle
Manag Optimi vehicle UNI Contro Implen Powere TEXT B	ement ization- es. T V ol of Ele nentati ed Bus. COCKS: Amir Techr Antor	 Power/Energy Management Controllers – Rule Based Based Control Strategies Simulation study – Energy Manager FUEL CELLS ctric Vehicle Dynamics - Fundamentals of Vehicle Dynamic Cor on on Electric Vehicles – Case Studies- Rechargeable Batte Khajepour, Saber Fallah and Avesta Goodarzi, 'Electric 	d Control Strategies ment control of electri 9 htrol (VDC) Systems-VD0 ry vehicles, Fuel Ce TOTAL: 60 PERIODS and Hybrid Vehicle wiley & Sons Ltd, 2014
Manag Optimi vehicle UNI Contro Implen Powere TEXT B 1. 2.	ement ization- es. T V ol of Ele nentati ed Bus. COCKS: Amir Techr Antor	 Power/Energy Management Controllers – Rule Based Based Control Strategies Simulation study – Energy Manager FUEL CELLS ctric Vehicle Dynamics - Fundamentals of Vehicle Dynamic Cor on on Electric Vehicles – Case Studies- Rechargeable Batte Khajepour, Saber Fallah and Avesta Goodarzi, 'Electric hologies, Modelling and Control: A Mechatronic Approach', Johr in Szumanowski, 'Hybrid Electric Power Train Enginee elling, Control, and Simulation', IGI Global, 2013 	d Control Strategies ment control of electri 9 ntrol (VDC) Systems-VD ry vehicles, Fuel Ce TOTAL: 60 PERIODS and Hybrid Vehicle of Wiley & Sons Ltd, 2014
Manag Optimi vehicle UNI Contro Implen Powere TEXT B 1. 2.	sement ization- es. T V ol of Ele nentationed ed Bus. GOOKS: Amir Techr Antor Mode ENCE B	 Power/Energy Management Controllers – Rule Based Based Control Strategies Simulation study – Energy Manager FUEL CELLS ctric Vehicle Dynamics - Fundamentals of Vehicle Dynamic Cor on on Electric Vehicles – Case Studies- Rechargeable Batte Khajepour, Saber Fallah and Avesta Goodarzi, 'Electric hologies, Modelling and Control: A Mechatronic Approach', Johr in Szumanowski, 'Hybrid Electric Power Train Enginee elling, Control, and Simulation', IGI Global, 2013 	d Control Strategies ment control of electri 9 htrol (VDC) Systems-VD0 ry vehicles, Fuel Ce TOTAL: 60 PERIODS and Hybrid Vehicle Wiley & Sons Ltd, 2014 ring and Technology

Minor Degree in Renewable Energy Sources

S.No.	Course Code	Lecture Courses	L	т	Р	с
1	10213EE141	Renewable Energy	3	0	0	3
2	10213EE142	Wind Energy Conversion Systems	3	0	0	3
3	10213EE143	Solar Photovoltaics: Fundamentals, Technology and Applications	3	0	0	3
4	10213EE144	Conversion of Energy in Buildings	3	0	0	3
5	10213EE145	Solar Thermal Energy Systems	3	0	0	3
6	10213EE146	Distributed Generation and Integration of Renewable Energy with Grid	3	0	0	3

COURSE CODE:	COURSE TITLE:	L	Т	Р	С
10213EE141	RENEWABLE ENERGY	3	0	0	3

COURSE CATEGORY: MINOR

PREAMBLE: This course focuses on the new renewable energy based electric energy generation technologies and their integration into the power grid. The principals of new energy based distributed generation technologies: solar, wind, and fuel cells.

PREREQUISITE COURSES: Basic Electrical & Electronics Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- Introduce about the renewable energy sources like wind, solar and wave energy.
- Impart knowledge about the environmental friendly energy production and consumption.
- Explain about energy-efficient systems and products for various applications.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain about Renewable Energy resources and its importance.	К2
CO2	Outline the process of photovoltaic power generation.	К2
CO3	Outline the process of power generation using wind energy sources.	К2
CO4	Biomass and biogas production techniques.	К2
CO5	Explain the fundamentals and applications of Geothermal energy, tidal energy, MHD and fuel cells.	К2

CORRELATION OF COS WITH POS AND PSOS

	-		-	-								
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1											L	L
CO2		Н	Н					М	М			
CO3		Н										
CO4			н		н	L	н				L	L
CO5		L			L			М	М		L	L
										•		

UNIT I	INTRODUCTION	9
	use-reserves of energy resources-energy cycle of the earth-en- on-renewable energy resources and their importance.	vironmental aspects o
UNIT II	SOLAR ENERGY	9
heliostats, hea	s, solar thermal systems and solar ponds, solar thermal cer t transport system, thermal storage systems, photovoltaic ene s, semi- conductors, solar cell, batteries, satellite solar power syste	rgy conversion, solid
UNIT III	WIND ENERGY	9
	ind power, wind turbine operation, site characteristics, horizontal ents, small and large machines, magnus effect, design principles c	
UNIT IV	BIOMASS AND BIOGAS	9
biomass resou environmenta liquefaction, r	systems, biomass production, energy plantation, short rotation sp rce agro-forestry wastes, municipal solid wastes and agro process factors and biomass energy development, combustion, pyro nodeling, appliances and latest development, bioconversion: bio chemicals from biomass and biotechnology.	sing industrial residues plysis, gasification and
UNIT V	OTHER RENEWABLE ENERGY SOURCES	9
applications. applications.	nergy, types, systems and application, Ocean thermal energy Wave energy - types, systems and applications. Tidal energy Aagneto Hydrodynamic system (MHD). Fuel cells – types and Aicro-hydel systems. Hybrid systems and applications.	- types, systems and
		TOTAL: 45 PERIODS
TEXT BOOKS:		
1. Rai G I), 'Non-Conventional Sources of Energy', Khanna Publishers, 2006	
	me S P and Nayak J K, 'Solar Energy - Principles of Thermal Collec w Hill, 2008.	ction and Storage', Tata
	OKS:	
REFERENCE BO	i P, K C Singal and Rakesh Ranjan, 'Renewable Energy S	ources and Emerging
1. Kothai	ologies', PHI Pvt. Ltd., New Delhi, 2008.	
1. Kothai Techn	ologies', PHI Pvt. Ltd., New Delhi, 2008. Kreith and Yogi Goswami D, 'Handbook of Energy Efficiency and R	enewable Energy', CR
 Kothai Techn Frank Press, Abbas 	ologies', PHI Pvt. Ltd., New Delhi, 2008. Kreith and Yogi Goswami D, 'Handbook of Energy Efficiency and R	

COURSE	CODE:	COURSE TITLE:		L	Т	Р	С
10213E	E142	WIND ENERGY CONVERSION SYSTEMS		3	0	0	3
COURSE CAT	EGORY: MII	NOR			I	I	
	-	y is the fast-growing renewable source for elected wind energy technology.	ctricity g	gene	ration.	This o	cours
PREREQUISI	TE COURSES	Basic Electrical Engineering					
COURSE EDU	JCATIONAL	OBJECTIVES:					
• To le	earn about P	ower extraction from wind energy					
• To d	istinguish th	e components and design of wind tower					
• To u	nderstand w	vorking principle of induction generator, synchro	nous ger	nerat	tor		
Upon th	e successful	completion of the course, students will be able t	0:				
СО		Course Outcomes	Knowl	-		-	
Nos.			revised	d Blo	om's ⁻	Taxono	omy)
CO1	Fundame	ntals of wind energy conversion			К2		
CO2	Types of v	vind turbines and aerodynamics			К2		
CO3	Compone	nts of wind turbine and its construction			К2		
CO4	Explain th	e principle of operation of Types of generators			K2		
CO5	Wind turb	ine control and monitoring system			K2		

CORRELATION OF COS WITH POS AND PSOS

cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L				L				L	М		
CO2	L								L	М		
CO3	н		Н					М	L	М		
CO4	L							М	М	М		
CO5	L		М		М			Н	М	М		

COURSE CONTENT:

UNIT I

WIND ENERGY FUNDAMENTALS AND MEASUREMENTS

9

Wind energy basics - Wind speed and scales - Terrain-Roughness-Wind mechanics - Power content – Class of wind turbine- Atmospheric boundary layers-Turbulence. Instrumentation for wind measurements - Wind data analysis - tabulation. Wind resource estimation - Betz's limit-Turbulence analysis.

UNIT II	WIND TURBINE AREODYNAMICS AND TYPES	9
technique	inology - Blade element theory - Blade design -Rotor performance and dyn (Rotor &Blade)-Types of loads - Source of loads - Up wind-Down wind ype - Direct generator drive/PMG/Rotor excited sync generator.	•
UNIT III	GEAR COUPLED GENERATOR WIND TURBINE COMPONENTS AND THEIR CONSTRUCTION	9
synchronisa Compensat circuits - G Battery/Su	sensors /Encode /Resolvers - Wind measurement: anemometer & w ation system - Soft starter - Switchgear [ACB/VCB]-Transformer - Cables ion panel - Programmable logic control – UPS - Yaw & pitch system: AC driv enerator rotor resistor controller(Flexi slip) - Differential protection relay ber capacitor charger & Batteries/Super capacitor for pitch /Lightning arrestors - Oscillation & Vibration sensing.	and assembly - ves - Safety chain y for generator -
UNIT IV	DIRECT ROTOR COUPLED GENERATOR (MULTIPOLE)[VARIABLE SPEED -VARIABLE FREQUENCY]	9
converter (or synch. Generator/PMG generator - Control rectifier-Capacitor banks DC-DC Step Up) - Grid tied inverter - Power management - Grid monitoring ransformer - Safety chain circuits.	
UNIT V	MODERN WIND TURBINE CONTROL & MONITORING SYSTEM	9
Wind turbi reports - O	itch system &Control algorithms-Protections used & Safety consideration ne monitoring with error codes - SCADA & Databases: remote monitoring peration & Maintenance for product lifecycle - Balancing technique (Rotor	g and generation
	/RT & New trends for new grid codes.	& Blade) - FACTS
	/RT & New trends for new grid codes.	TAL: 45 PERIODS
техтвоок	/RT & New trends for new grid codes.	
TEXTBOOK	/RT & New trends for new grid codes. TO	TAL: 45 PERIODS
TEXTBOOK 1. VVI TEF	 /RT & New trends for new grid codes. TO S: N Kishore 'Renewable Energy Engineering and Technology – A Knowledge 	TAL: 45 PERIODS
TEXTBOOK 1. VV TEF 2. Ma	/RT & New trends for new grid codes. TO S: N Kishore 'Renewable Energy Engineering and Technology – A Knowledg I Press, 2008.	TAL: 45 PERIODS ge Compendium', ndon.
TEXTBOOK 1. VV TEF 2. Ma	VRT & New trends for new grid codes. TO S: N Kishore 'Renewable Energy Engineering and Technology – A Knowledge U Press, 2008. rtin OL Hansen 'Aerodynamics of Wind Turbines', 2 nd Edition, Earthscan, Long. Khan: Non-Conventional Energy Sources, Tata McGraw-Hill Education, 2006	TAL: 45 PERIODS ge Compendium', ndon.
TEXTBOOK 1. VV/ TEF 2. Ma 3. B.H REFERENCE	VRT & New trends for new grid codes. TO S: N Kishore 'Renewable Energy Engineering and Technology – A Knowledge U Press, 2008. rtin OL Hansen 'Aerodynamics of Wind Turbines', 2 nd Edition, Earthscan, Long. Khan: Non-Conventional Energy Sources, Tata McGraw-Hill Education, 2006	TAL: 45 PERIODS ge Compendium', ndon.
TEXTBOOK 1. VV 2. Ma 3. B.H REFERENCE 1. Joh	VRT & New trends for new grid codes. TO S: N Kishore 'Renewable Energy Engineering and Technology – A Knowledg I Press, 2008. rtin OL Hansen 'Aerodynamics of Wind Turbines', 2 nd Edition, Earthscan, Lon .Khan: Non-Conventional Energy Sources, Tata McGraw-Hill Education, 2006 BOOKS: Inson, G.L., 'Wind Energy Systems', Prentice Hall, 1985. I Gipe 'Wind Energy Basics: A Guide to Small and Micro Wind', Chelsea C	TAL: 45 PERIODS ge Compendium', ndon. 5.

COURSE CODE:
10213EE143

COURSE TITLE:

SOLAR PHOTOVOLTAICS: FUNDAMENTALS, TECHNOLOGY AND APPLICATIONS L T P C 2 0 2 3

COURSE CATEGORY: Minor Degree Course

PREAMBLE: This course offer a basic knowledge on solar Photovoltaic technology and Systems comprising up of the fundamentals, design and application of solar photovoltaic systems for power generation on small and large scale electrification.

PRE-REQUISITES: Basic Electrical Engineering

COURSE EDUCATIONAL OBJECTIVES:

To impart knowledge on

- To familiar with basics of solar PV
- To familiar with various PV performance measure terminologies.
- To understand about manufacturing of PV cells & sizing aspects of PV systems.
- To understand about PV system components and apply them in installation practices& associated trouble shootings.
- To understand about PV system applications & associated safety measures

COURSE OUTCOMES:

Upon the completion of the course students will be able to

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Understand the principle of direct solar energy conversion to power using PV	К2
CO2	Contrast the performance measures of PV	К2
CO3	Infer on various solar cells & design aspects of solarPV	К2
CO4	Identify various PV components & construct few systems	К2
CO5	Develop ideas for working on solar PV systems & associated safety practices	К2

CORRELATION OF COs AND POs

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н									н		
CO2	н	М	М							н		Н
CO3	Н			Н						Н		Н
CO4	Н	М		Н						Н		
CO5	Н									Н		

		-
UNIT I	SOLAR CELL FUNDAMENTALS	6
	energy conversion, Photovoltaic effect, Semiconductor properties, olar cell structure, parameters of solar cell.	, energy levels
UNIT II	PV MODULE PERFORMANCE	6
	ules & arrays, I-V & P-V characteristics, maximum power point, efficiency, fill factor, role of bypass & blocking diode, factors affect	•
UNIT III	MANUFACTURING OF PV CELLS & DESIGN OF PV SYSTEMS	6
cells, amorphous	cells - Production process of single crystalline silicon cells, multi cr silicon, cadmium telluride, copper indium gallium diselenide cells. estimation, various aspects, system simulation tools.	•
UNIT IV	SOLAR PV SYSTEMS INSTALLATIONS & TROUBLE SHOOTING	6
solar photovoltai	tem, small system for consumer applications, hybrid solar PV system c. System components - PV arrays, inverters, batteries, charge or ray installation, operation, costs, reliability. Troubleshooting	controllers, ne
UNIT V	PV SYSTEM APPLICATIONS & SAFETY	6
		•
for distributed p challenges, Applic	d photovoltaic units, grid connected central power stations, stand ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in	n PV industry& ice solar powe
for distributed p challenges, Applie satellites. Socio-e	ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in	n PV industry& .ce solar powe
for distributed p challenges, Applie satellites. Socio-e	ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in	n PV industry& ce solar powe n Installation o
for distributed p challenges, Applic satellites. Socio-e solar PV systems TEXTBOOKS: 1. Chetan Si Learning	ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in TOT/ ngh Solanki., 'Solar Photovoltaic: Fundamentals, Technologies and A Pvt., Ltd., 2009.	n PV industry& ice solar powe n Installation o AL: 30 PERIOD
for distributed p challenges, Applic satellites. Socio-e solar PV systems TEXTBOOKS: 1. Chetan Si Learning	ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in TOT/	n PV industry& ice solar powe n Installation o AL: 30 PERIOD
for distributed p challenges, Applic satellites. Socio-e solar PV systems TEXTBOOKS: 1. Chetan Si Learning	ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in TOT / ngh Solanki., 'Solar Photovoltaic: Fundamentals, Technologies and A Pvt., Ltd., 2009. Solar Cell Technology and Applications', CRC Press, 2010.	n PV industry& ce solar powe n Installation c AL: 30 PERIOD
for distributed p challenges, Applie satellites. Socio-e solar PV systems TEXTBOOKS: 1. Chetan Si Learning 2. Jha A.R., ' REFERENCE BOOH	ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in TOT / ngh Solanki., 'Solar Photovoltaic: Fundamentals, Technologies and A Pvt., Ltd., 2009. Solar Cell Technology and Applications', CRC Press, 2010.	n PV industry& ice solar powe n Installation c AL: 30 PERIOD
for distributed p challenges, Applie satellites. Socio-e solar PV systems TEXTBOOKS: 1. Chetan Si Learning I 2. Jha A.R., ' REFERENCE BOOH 1. Chetan Si	ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in TOT/ ngh Solanki., 'Solar Photovoltaic: Fundamentals, Technologies and A Pvt., Ltd., 2009. Solar Cell Technology and Applications', CRC Press, 2010.	n PV industry& ice solar powe n Installation c AL: 30 PERIOD
for distributed p challenges, Applic satellites. Socio-e solar PV systems TEXTBOOKS: 1. Chetan Si 2. Jha A.R., ' REFERENCE BOOH 1. Chetan Si 2. Luque A. I	ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in TOT / ngh Solanki., 'Solar Photovoltaic: Fundamentals, Technologies and A Pvt., Ltd., 2009. Solar Cell Technology and Applications', CRC Press, 2010. (S: ngh Solanki 'Solar PV technology and system', PHI learning private lir	n PV industry ice solar powe n Installation c AL: 30 PERIOD pplication', PH mited, 2015.
for distributed p challenges, Applic satellites. Socio-e solar PV systems TEXTBOOKS: 1. Chetan Si Learning I 2. Jha A.R., ' REFERENCE BOOH 1. Chetan Si 2. Luque A. I 3. Partain L.	ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in TOT / ngh Solanki., 'Solar Photovoltaic: Fundamentals, Technologies and A Pvt., Ltd., 2009. Solar Cell Technology and Applications', CRC Press, 2010. (S: ngh Solanki 'Solar PV technology and system', PHI learning private lir and Andreev V.M., 'Concentrator Photovoltaic', Springer, 2007.	n PV industry ice solar powe n Installation of AL: 30 PERIOD opplication', PH mited, 2015.
for distributed p challenges, Applic satellites. Socio-e solar PV systems TEXTBOOKS: 1. Chetan Si Learning I 2. Jha A.R., <i>'</i> REFERENCE BOOH 1. Chetan Si 2. Luque A. I 3. Partain L.	ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in TOT / ngh Solanki., 'Solar Photovoltaic: Fundamentals, Technologies and A Pvt., Ltd., 2009. Solar Cell Technology and Applications', CRC Press, 2010. (S: ngh Solanki 'Solar PV technology and system', PHI learning private lin and Andreev V.M., 'Concentrator Photovoltaic', Springer, 2007. D., Fraas L.M., 'Solar Cells and Their Applications', 2 nd Edition, Wiley,	n PV industry ice solar powe n Installation of AL: 30 PERIOD pplication', Ph nited, 2015.
for distributed p challenges, Applie satellites. Socio-e solar PV systems TEXTBOOKS: 1. Chetan Si Learning I 2. Jha A.R., ' REFERENCE BOOH 1. Chetan Si 2. Luque A. I 3. Partain L. LABORATORY PR 1) To perform exp	ower supply in remote and rural areas, Outlook for the Indian cations: solar home system, solar cars, Solar Charger, aircraft, spa conomic and environmental merits of photovoltaic systems safety in TOT / ngh Solanki., 'Solar Photovoltaic: Fundamentals, Technologies and A Pvt., Ltd., 2009. Solar Cell Technology and Applications', CRC Press, 2010. (S: ngh Solanki 'Solar PV technology and system', PHI learning private lin and Andreev V.M., 'Concentrator Photovoltaic', Springer, 2007. D., Fraas L.M., 'Solar Cells and Their Applications', 2 nd Edition, Wiley, ACTICES (15 PERIODS)	n PV industry ice solar powe n Installation of AL: 30 PERIOD pplication', Ph nited, 2015.

4) To perform experiment to study effect of tilt angle on SPV module output.

5) To perform experiment to demonstrate the effect of shading on SPV module output.

6) To study the effect of shading on the output of solar panel.

8) To understand how to use various electrical measuring equipments.

WEB REFERENCES:

<u>https://www.nrel.gov</u> The *National Renewable Energy Laboratory* (*NREL*), located in Golden, Colorado, specializes in renewable energy and energy efficiency research and development. *NREL* is a government-owned, contractor-operated facility, and is funded through the United States Department of Energy.

<u>https://nise.res.in/</u> National Institute of Solar Energy, an autonomous institution of Ministry of New and Renewable (MNRE), is the apex National R&D institution in the field Solar Energy. The Government of India

http://www.seriius.org/ (SERIIUS—the Solar Energy Research Institute for India and the United States—is co-led by the Indian Institute of Science (IISc)—Bangalore, India, and the National Renewable Energy Laboratory (NREL), Golden, Colorado, USA.)

	JRSE CO	DDE:			CO	URSE TI	TLE:			L	Т	Р
10	213EE1	44	(CONSERV	VATION	OF ENEF	RGY IN B	UILDING	iS	3	0	0
OURSE	CATEGO	DRY: MII	NOR									
	onserva	tion con	bjective cepts in									•
REREQU	JISITE C	OURSES	: Nil									
OURSE	EDUCA		OBJECTI	VES:								
he obje	tives o	f the cou	urse are	to make	the stuc	lents,						
• li	ntroduc	tion to e	energy co	onservat	ion tech	nology						
			about w			•••	m					
• E	nergy e	fficiency	/ improv	ement ir	n buildin	gs						
• [iscuss i	n detail	about ei	nergy co	nservati	on act.						
• R	enewal	ble ener	gy gener	ation in	building	s.						
OURSE	ουτςο	MES:										
COURSE Upor CO Nos.			complet		e course Outcor	e, studer	nts will b	e able to	Knov	-	Level (Ba	
Upor CO	the su	ccessful		Course	Outcon	e, studer nes		e able to	Knov	-	Level (Ba m's Tax K2	
Upor CO Nos.	the suc	ccessful oductior	complet n to ener etail abo	Course	e Outcon	e, studer nes technol	ogy	e able to	Knov	-	m's Tax	
Upor CO Nos. CO1	Intro Exp	ccessful oductior lain in de	n to ener	Course rgy conse out waste	e Outcon ervation e heat re	e, studer nes technole covery s	ogy	e able to	Knov	-	m's Tax K2	
Upor CO Nos. CO1 CO2	Intro Exp Ene	oductior lain in de	n to ener etail abo	Course rgy conse out waste proveme	e Outcon ervation e heat re ent in bu	e, studer nes technole covery s iildings	ogy ystem	e able to	Knov	-	m's Tax K2 K2	
Upor CO Nos. CO1 CO2 CO3	Intro Exp Ene Disc	oductior lain in do rgy effic cuss in do	n to ener etail abo iency im	Course rgy conse out waste proveme out energ	e Outcon ervation e heat re ent in bu gy conse	e, studer nes technolo covery s ildings rvation a	ogy ystem	e able to	Knov	-	m's Tax K2 K2 K2 K2	
Upor CO Nos. CO1 CO2 CO3 CO4	Intro Exp Ene Disc Ren	oductior lain in de rgy effic cuss in de ewable	n to ener etail abo iency im etail abo energy g	Course rgy conse out waste proveme out energ	e Outcon ervation e heat re ent in bu gy conse	e, studer nes technolo covery s ildings rvation a	ogy ystem	e able to	Knov	-	m's Tax K2 K2 K2 K2 K2	
Upor CO Nos. CO1 CO2 CO3 CO4 CO5	Intro Exp Ene Disc Ren	oductior lain in de rgy effic cuss in de ewable	n to ener etail abo iency im etail abo energy g	Course rgy conse out waste proveme out energ	e Outcon ervation e heat re ent in bu gy conse	e, studer nes technolo covery s ildings rvation a	ogy ystem	e able to	Knov	-	m's Tax K2 K2 K2 K2 K2 K2	
Upor CO Nos. CO1 CO2 CO3 CO4 CO5 CORRELA	Intro Exp Ene Disc Ren	oductior lain in de rgy effic cuss in de ewable PF COs A	n to ener etail abo iency im etail abo energy g ND POs	Course rgy conse ut waste proveme out energ eneratio	e Outcon ervation e heat re ent in bu gy conse on in bui	e, studer nes technolo covery s iildings rvation a ldings.	ogy ystem act.		Knov revis	ed Bloc	m's Tax K2 K2 K2 K2 K2 K2	
Upor CO Nos. CO1 CO2 CO3 CO4 CO5 CO5 CORRELA	Intro Exp Ene Disc Ren	oductior lain in de rgy effic cuss in de ewable PF COs A	n to ener etail abo iency im etail abo energy g ND POs	Course rgy conse ut waste proveme out energ eneratio	e Outcon ervation e heat re ent in bu gy conse on in bui	e, studer nes technolo covery s iildings rvation a ldings.	ogy ystem act.		Knov revis	ed Bloc	m's Tax K2 K2 K2 K2 K2 K2 PO11	PO1
Upor CO Nos. CO1 CO2 CO3 CO4 CO5 CO5 CO5 CO5 CO1	Intro Exp Ene Disc Ren	oductior lain in de rgy effic cuss in de ewable PF COs A PO2	n to ener etail abo iency im etail abo energy g ND POs PO3	Course rgy conse ut waste proveme out energ eneratio	e Outcon ervation e heat re ent in bu gy conse on in bui	e, studer nes technolo covery s iildings rvation a ldings.	ogy ystem act.	P08	Knov revis	ed Bloc	m's Tax K2 K2 K2 K2 K2 K2 PO11	PO1
Upor CO Nos. CO1 CO2 CO3 CO4 CO5 CO5 CO5 CO1 CO2	Intro Exp Ene Disc Ren	oductior lain in de rgy effic cuss in de ewable PF COs A PO2 H	n to ener etail abo iency im etail abo energy g ND POs PO3	Course rgy conse ut waste proveme out energ generatio	e Outcon ervation e heat re ent in bu gy conse on in bui	e, studer nes technolo covery s iildings rvation a ldings.	ogy ystem act.	P08	Knov revis	ed Bloc	m's Tax K2 K2 K2 K2 K2 K2 PO11	PO1

COURSE CONTENT:

UNIT I	GENERAL ASPECTS	9
Introduction, A	pproach and modern techniques, benefits, trends, Energy Conservat	tion Technology,
Energy Conserv	vation in Energy Intensive Industries, Techno-Economic evaluation	of conservation
technologies, Ef	ficiency Improvements Thermal Utilities, Heating and Melting Applications	s, Refractories.

UNIT II	WASTE HEAT RECOVERY	9
Sources of wa	ste heat and its potential applications, Waste heat survey and meas	surements, Data
collection, Limi	tations and affecting factors Heat recovery equipment and systems, H	Heat Exchangers,
Incinerators Re	generators and Recuperates, system Integration.	
UNIT III	ENERGY EFFICIENCY IN BUILDINGS	9
Adoption to sus	stainable resources, process and Technologies, Green Buildings, Intelligent	Buildings, Rating
of Buildings, Ef	icient Use of Buildings, Solar Passive Architecture, Eco-housing concepts	and National and
International no	orms.	
UNIT IV	ENERGY CONSERVATION & ACT	9
0,	ation act 2001, salient features, Ministry of New and Renewable Energy (il (NPC), Bureau of Energy Efficiency (BEE), Net metering, ECBC (Ener 2017.	
		•
UNIT V Model of solar	RENEWABLE ENERGY GENERATION IN BUILDINGS power plant, wind power plant, energy consumption calculation in building	9 Idings, design of
Model of solar energy efficien	power plant, wind power plant, energy consumption calculation in bui t solar buildings, design of grid connected renewable energy sources, selection of renewable energy sources based on location.	l Idings, design of , energy storage
Model of solar energy efficien	power plant, wind power plant, energy consumption calculation in bui t solar buildings, design of grid connected renewable energy sources, selection of renewable energy sources based on location.	l Ildings, design of
Model of solar energy efficien requirements, s	power plant, wind power plant, energy consumption calculation in bui t solar buildings, design of grid connected renewable energy sources, selection of renewable energy sources based on location.	l Idings, design of , energy storage
Model of solar energy efficien requirements, s TEXT BOOKS: 1. Rai G D	power plant, wind power plant, energy consumption calculation in bui t solar buildings, design of grid connected renewable energy sources, selection of renewable energy sources based on location. TO	ldings, design of , energy storage TAL: 45 PERIODS
Model of solar energy efficien requirements, s TEXT BOOKS: 1. Rai G D 2. Sukhati	power plant, wind power plant, energy consumption calculation in bui t solar buildings, design of grid connected renewable energy sources, selection of renewable energy sources based on location. TO , 'Non-Conventional Sources of Energy', Khanna Publishers, 2006.	ldings, design of , energy storage TAL: 45 PERIODS
Model of solar energy efficien requirements, s TEXT BOOKS: 1. Rai G D 2. Sukhatı McGrav	power plant, wind power plant, energy consumption calculation in bui t solar buildings, design of grid connected renewable energy sources, selection of renewable energy sources based on location. TO , 'Non-Conventional Sources of Energy', Khanna Publishers, 2006. me S P and Nayak J K, 'Solar Energy - Principles of Thermal Collection ar w Hill, 2008.	ldings, design of , energy storage TAL: 45 PERIODS
Model of solar energy efficien requirements, s TEXT BOOKS: 1. Rai G D 2. Sukhatı McGrav REFERENCE BO	power plant, wind power plant, energy consumption calculation in bui t solar buildings, design of grid connected renewable energy sources, selection of renewable energy sources based on location. TO , 'Non-Conventional Sources of Energy', Khanna Publishers, 2006. me S P and Nayak J K, 'Solar Energy - Principles of Thermal Collection ar w Hill, 2008.	Idings, design of , energy storage TAL: 45 PERIODS nd Storage', Tata
Model of solar energy efficien requirements, s TEXT BOOKS: 1. Rai G D 2. Sukhatı McGrav REFERENCE BO 1. Kothari	power plant, wind power plant, energy consumption calculation in bui t solar buildings, design of grid connected renewable energy sources, selection of renewable energy sources based on location. TO , 'Non-Conventional Sources of Energy', Khanna Publishers, 2006. me S P and Nayak J K, 'Solar Energy - Principles of Thermal Collection ar w Hill, 2008. OKS:	Idings, design of , energy storage TAL: 45 PERIODS nd Storage', Tata
Model of solar energy efficien requirements, s TEXT BOOKS: 1. Rai G D 2. Sukhati McGrav REFERENCE BO 1. Kothari PHI Pv	power plant, wind power plant, energy consumption calculation in bui t solar buildings, design of grid connected renewable energy sources, selection of renewable energy sources based on location. TO , 'Non-Conventional Sources of Energy', Khanna Publishers, 2006. me S P and Nayak J K, 'Solar Energy - Principles of Thermal Collection ar w Hill, 2008. OKS: P, K C Singal and Rakesh Ranjan, 'Renewable Energy Sources and Emergir	Idings, design of , energy storage TAL: 45 PERIODS nd Storage', Tata
Model of solar energy efficien requirements, s TEXT BOOKS: 1. Rai G D 2. Sukhatı McGrav REFERENCE BO 1. Kothari PHI Pv 2. L.C. Wi	power plant, wind power plant, energy consumption calculation in bui t solar buildings, design of grid connected renewable energy sources, selection of renewable energy sources based on location. TO , 'Non-Conventional Sources of Energy', Khanna Publishers, 2006. me S P and Nayak J K, 'Solar Energy - Principles of Thermal Collection ar w Hill, 2008. OKS: P, K C Singal and Rakesh Ranjan, 'Renewable Energy Sources and Emergir t. Ltd., New Delhi, 2008.	Idings, design of , energy storage TAL: 45 PERIODS nd Storage', Tata
Model of solar energy efficien requirements, s TEXT BOOKS: 1. Rai G D 2. Sukhatı McGrav REFERENCE BO 1. Kothari PHI PV 2. L.C. Wi Publici	power plant, wind power plant, energy consumption calculation in bui t solar buildings, design of grid connected renewable energy sources, selection of renewable energy sources based on location. TO , 'Non-Conventional Sources of Energy', Khanna Publishers, 2006. me S P and Nayak J K, 'Solar Energy - Principles of Thermal Collection ar w Hill, 2008. OKS: P, K C Singal and Rakesh Ranjan, 'Renewable Energy Sources and Emergir t. Ltd., New Delhi, 2008. tte, P.S. Schmidt, D.R. Brown, 'Industrial Energy Management and Utilisati	Idings, design of , energy storage TAL: 45 PERIODS nd Storage', Tata

	URSE CODE:	COURSE TITLE:	L	Т	Р	(
10	D213EE145	SOLAR THERMAL ENERGY SYSTEMS	3	0	0	3
COURSE	CATEGORY: MINOF	R				
PREAMB	LE: Introduction ab	out solar thermal energy conversion systems, ene	ergy colle	ctors, so	olar the	erm
energy s mpleme	-	pplications of solar thermal energy and cost	estimati	on for	solar	pla
PREREQU	JISITE COURSES: Ba	asic Electrical & Electronics Engineering.				
	EDUCATIONAL OB					
-		are to make the students,				
		solar thermal energy conversion systems				
• E	Explain about types	of energy collectors and its performance				
• L	Inderstand in detai	l about solar thermal energy storage systems				
• (Dutline about Pract	cal applications of solar thermal energy				
	xplain about the co conversion	ost estimation and installation related issues of sol	ar therm	al energ	У	
	OUTCOMES:	npletion of the course, students will be able to:				
		ipication of the course, staticities will be able to:		<u> </u>	1/5	
CO Nos.		Course Outcomes	on re	edge Lev evised B Faxonor	loom's	
CO1	Discuss about typ	pes of solar thermal energy conversion systems		К2		
CO2	Explain about wo	orking of energy collectors and its performance		К2		
		in this of energy concettors and its performance				
CO3	Understand in de	etail about solar thermal energy storage systems		К2		
CO3 CO4				K2 K2		

CORRELATION OF COS AND POS

of solar thermal energy conversion

CO5

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1											L	L
CO2		Н	Н					М	М			
CO3		Н										
CO4			Н		Н	L	Н				L	L
CO5		L			L			М	М		L	L
	•											

К2

UNIT I	INTRODUCTION	9
radiation, Inst	ermal collection and storage, Thermal applications, Extra-terrestrial a ruments for measuring solar radiation and sunshine, Solar radiation da pirical equations for predicting the availability of solar radiation and sola	ata, Solar radiation
UNIT II	ENERGY COLLECTORS	9
reflectors, Cy Overall loss co	of liquid flat plate collectors, Concentrating collectors, Flat-plate co indrical parabolic collector, Performance analysis, Transmissivity of pefficient and heat transfer correlations, Collector efficiency factor, Coll und parabolic collector, Parabolic dish collector, Central receiver collector	the cover system ector heat remova
UNIT III	ENERGY STORAGE	9
	b thermal energy storage, sensible and latent heat storage, Thermo cher rinciple of working of solar pond, Description, Performance analysis, Open nd concepts.	
UNIT IV	APPLICATIONS	9
heaters, Solar	o solar air heater, Performance analysis of conventional air heater, thermal energy for cooling, refrigeration and air conditioning, the plications, domestic and industrial applications.	
UNIT V	COST ESTIMATION	9
sensitivity ana	k period, return on investment, net present value, internal rate of retu lysis, Financing options, energy performance contracts and role of ESCO hnical design and Financing, Project planning techniques; CPM and PERT.	s, Project definition
	1	TOTAL: 45 PERIOD
TEXT BOOKS:		
1. Mean	s.R.S, 'Green Building: Project Planning and Cost Estimating', Kingston, 20	006.
2. Kibert	.C.J. 'Sustainable Construction: Green Building Design', 2 nd Edition, Wiley	, 2007.
REFERENCE BO	DOKS:	
1. Boeck	er .J, 'Integrative Design Guide to Green Building', Wiley, 2009.	

COURSE CODE:	COURSE TITLE: DISTRIBUTED GENERATION AND INTEGRATION OF	L	Т	Р	С			
10213EE146	RENEWABLE ENERGY WITH GRID	3	0	0	3			
COURSE CATEGORY: MI	IOR							
PREAMBLE: This course aims to give complete knowledge about distributed generation of renewable								

energy sources and integration issues of hybrid renewable energy sources with grid.

PREREQUISITE COURSES: Basic Electrical & Electronics Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- Understand about distributed and grid connected energy generation
- Working concept of multiple renewable energy generation systems
- Grid integration issues of renewable energy generation

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Understanding about distributed and grid connected energy generation	К2
CO2	Explain about the working of turbine generators for different renewable energy sources	К2
CO3	Discuss about distributed generation and equipment's required	К2
CO4	Renewable energy with grid integration and its issues	K2
CO5	Hybridization of multiple renewable energy resources with grid	К2

CORRELATION OF COS AND POS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1											L	L
CO2		Н	Н					М	М			
CO3		Н										
CO4			Н		Н	L	Н				L	L
CO5		L			L			М	М		L	L

UNIT I	INTRODUCTION	9
systems, Load c curve data accu long range plan	eration System: Decentralized versus Central Station generation, urves and Load curve analysis. Coincidence behaviour and Load curv rately Planning and Planning Process: Planning finding the best alte ning. Cost and Economic Evaluation of Distributed Generation: Co s bases and cost effectiveness evaluation.	ves measuring load ernative, Short and
UNIT II	ENERGY GENERATION	9
generators Sola	e generator concepts: Utility system turbine generators; Mini and r thermal power generations, Utility Scale PhotoVoltaic (USPV) tion; Biomass based generation.	-
UNIT III	DISTRIBUTED GENERATION	9
of demand, AC	Cost from past, present, and future, basic DG cost analysis, cost evalu and DC power generation – energy and storage requirement calcul ler requirements.	
UNIT IV	GRID INTEGRATION	9
of DG-interconn the grid by RE policy Econom	ction Issues and Need of Integration of Renewable Energy: The pow ections, type of DG grid interconnection, DG-Grid interconnections systems integration; Interfacing techniques; Innovations required ics: Grid-connected energy storage schemes; response requ t considerations.	issues - Effects or in technology and
of DG-interconn the grid by RE policy Econom	ections, type of DG grid interconnection, DG-Grid interconnections systems integration; Interfacing techniques; Innovations required ics: Grid-connected energy storage schemes; response requ	issues - Effects or in technology and
of DG-interconn the grid by RE policy Econom assessment, cos UNIT V Hybrid Energy S applications; co	ections, type of DG grid interconnection, DG-Grid interconnections systems integration; Interfacing techniques; Innovations required ics: Grid-connected energy storage schemes; response requ t considerations.	issues - Effects or in technology and irement, capacity 9 grid, Principles and
of DG-interconn the grid by RE policy Econom assessment, cos UNIT V Hybrid Energy S applications; co	ections, type of DG grid interconnection, DG-Grid interconnections systems integration; Interfacing techniques; Innovations required ics: Grid-connected energy storage schemes; response required t considerations. HYBRID SOURCE INTEGRATION ystems: types, integration issues of hybrid energy generation with a mparison of schemes; System design concept: Techno-economic personal estimation.	issues - Effects or in technology and irement, capacity 9 grid, Principles and
of DG-interconn the grid by RE policy Econom assessment, cos UNIT V Hybrid Energy S applications; co	ections, type of DG grid interconnection, DG-Grid interconnections systems integration; Interfacing techniques; Innovations required ics: Grid-connected energy storage schemes; response required t considerations. HYBRID SOURCE INTEGRATION ystems: types, integration issues of hybrid energy generation with a mparison of schemes; System design concept: Techno-economic personal estimation.	issues - Effects or in technology and irement, capacity 9 grid, Principles and erformance; Energy
of DG-interconn the grid by RE policy Econom assessment, cos UNIT V Hybrid Energy S applications; co storage schemes TEXT BOOKS: 1. Willis H	ections, type of DG grid interconnection, DG-Grid interconnections systems integration; Interfacing techniques; Innovations required ics: Grid-connected energy storage schemes; response required t considerations. HYBRID SOURCE INTEGRATION ystems: types, integration issues of hybrid energy generation with a mparison of schemes; System design concept: Techno-economic personal estimation.	issues - Effects or in technology and irement, capacity grid, Principles and erformance; Energy TOTAL: 45 PERIODS
of DG-interconn the grid by RE policy Econom assessment, cos UNIT V Hybrid Energy S applications; co storage schemes TEXT BOOKS: 1. Willis H	ections, type of DG grid interconnection, DG-Grid interconnections systems integration; Interfacing techniques; Innovations required ics: Grid-connected energy storage schemes; response required t considerations. HYBRID SOURCE INTEGRATION ystems: types, integration issues of hybrid energy generation with a mparison of schemes; System design concept: Techno-economic person and estimation. Lee, 'Distributed Power Generation: Planning and Evaluation', Marcel Lee, 'Power Distribution Planning Reference Book', Marcel Dekker, In	issues - Effects or in technology and irement, capacity grid, Principles and erformance; Energy TOTAL: 45 PERIODS
of DG-interconn the grid by RE policy Econom assessment, cos UNIT V Hybrid Energy S applications; co storage schemes TEXT BOOKS: 1. Willis H 2. Willis H 2. Willis H	ections, type of DG grid interconnection, DG-Grid interconnections systems integration; Interfacing techniques; Innovations required ics: Grid-connected energy storage schemes; response required t considerations. HYBRID SOURCE INTEGRATION ystems: types, integration issues of hybrid energy generation with a mparison of schemes; System design concept: Techno-economic person and estimation. Lee, 'Distributed Power Generation: Planning and Evaluation', Marcel Lee, 'Power Distribution Planning Reference Book', Marcel Dekker, In	issues - Effects or in technology and irement, capacity 9 grid, Principles and erformance; Energy TOTAL: 45 PERIODS I Dekker, Inc. c.

B.Tech. Programme in Electrical and Electronics Engineering with Honors in Smart Grid Technologies

List of Courses	(18 Credits)
-----------------	--------------

Sl.No.	Course Code	Lecture Courses	L	т	Ρ	с
1	10212EE171	Smart Grid	3	0	0	3
2	10212EE172	Energy Management and SCADA	3	0	0	3
3	10212EE173	Power System Restructuring	3	0	0	3
4	10212EE174	Distributed Generation and Micro Grid	3	0	0	3
5	10212EE175	IoT Applications in Smart Grid	3	0	0	3
6	10212EE176	AI for Smart Grid Systems	3	0	0	3

COURSECODE:	COURSE TITLE:	L	Т	Р	С
10212EE171	SMART GRID	3	0	0	3

COURSE CATEGORY: Honors

PREAMBLE: To enable the students acquire knowledge on smart grid, different options of architectural design and sensors, measurement technology for various aspects of smart grid, renewable energy sources and storage integration with smart grid.

PREREQUISITE COURSES: Power System Analysis.

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- To understand the basic concepts, components and architecture of smart grid.
- To understand the various communication technologies in smart grid.
- To understand the various measurement smart energy meters in smart grid.
- To understand the power quality measurement in smart grid.
- To brief about role of Renewable Energy Storage and Electric Vehicles in smart grid.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.				с	ourse C	outcome	es					edge Lev Bloom'	-	
CO1	-	cate th mission		of sma	art grid	techno	logy an	d chara	cteristi	cs of		К2	2	
CO2	Desc	ribe the	concep	t of com	nmunica	tion tec	hnologie	es of sm	art grid			К2	2	
CO3	Exem	nplify th	e smart	meters,	sensors	s and the	eir role i	n smart	grid			К2	2	
CO4	Analy	yse the	power q	uality m	neasurei	ment in	smart gi	rid				К2	2	
CO5	Analy grid	yse the	renewa	ble ene	ergy sto	rage an	d electr	ic vehic	le for s	mart		К2	2	
CORRI	ELATION	N OF CO	s WITH	POs AN	D PSOs									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н		М		М			М					М	Н
CO2	н	М						М					М	Н
CO3	н			М	М			М					М	н
CO4	н	М	М		М			М					М	н
CO5	Н			М				М					М	Н

COURSE CO	INTENT:	
UNIT I	INTRODUCTION	9
Enhanceme	rd Versus Smart Grid, Rationale for Smart Grid, Computational Intelligence, Power ent, Communication and Standards, Environment and Economics, Present development & Inte Smart Grid, Architecture of smart grid, Functions of smart grid components, characteristics on Grid.	ernational
UNIT II	COMMUNICATION TECHNOLOGIES TO SMART GRID	9
Smart Grid communica	n to Smart grid communication network, IEEE P2030 communication model, Services suppo d communication network, Communications Technologies available for Smart Grids, ations, Power line communication, Comparison of communication Technologies, Sm ations Requirements- Security-System reliability. Smart grid communication standards.	, Mobile
UNIT III	SMART METERS AND SENSORS	9
smart grid,	n to Smart Meters, Advanced Metering infrastructure (AMI) drivers and benefits, AMI nee Phasor Measurement Unit (PMU), Functional requirements of PMUs, Intelligent Electronic ir application for monitoring & protection, Wide Area measurement system (WAMS), Sensors	c Devices
UNIT IV	POWER QUALITY MEASUREMENT IN SMART GRID	9
Quality Cor	lity & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Source nditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit, Opt and applications to smart grid.	
UNIT V	RENEWABLE ENERGY STORAGE AND ELECTRIC VEHICLE	9
	f renewable generation, Importance of micro grid, Demand response issues, Energy es, Grid integration issues of renewable energy sources. Vehicle Architecture, PHEV technology	-
	TOTAL: 45	PERIODS
TEXTBOOK	S:	
2. Jan	nes Momoh, 'Smart Grid: Fundamentals of design and analysis', John Wiley & Sons Inc, IEEE Pr aka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihi kookoyam 'Sm hnologyand Applications', John Wiley Sons Inc, 2012.	
REFERENCE	BOOKS:	
	eidoon P.Sioshansi, 'Smart Grid: Integrating Renewable, Distributed & Efficient Energy',	Academic
	ss, 2012	
Pre 2. Stu	ss, 2012 art Borlase, 'Smart Grid: Infrastructure, Technology and Solutions', CRC Press, 2016	
Pre 2. Stu 3. Lar	ss, 2012	

CO	URSECO	DE:				COUR	SE TITLE	:			L	Т	Р	С
10	212EE1	72		E	NERGY	MANAG	EMENT	AND SC	ADA		3	0	0	3
COUR	SE CATE	GORY: H	Honors								·	·		
Manag	gement.	Studen	ts may	gain kn	owledge	e on En	ergy Au	-	Lighting				ssential ance of	
PRERE	QUISITE		SES: Pow	ver Syste	em Analı	ysis								
Th	e object • Uno • Uno • Enh • Exp	derstand nance th pose to t niliarize	the cour d the fur d the eco e knowl he conc	se are to ndament onomic a edge in ept of su	tals of e analysis lighting uperviso	nergy m and sys [.] and cog ry contr	anagem tem ene generation rol and c	on. lata acq	nagemei		ectrical s	ystem a	and equi	oment.
			ompletio	on of the	e course	, studer	nts will b	e able t	0:					
CO Nos.				C	Course C	Outcome	es					-	vel (Bas n's Taxor	
CO1		erstand t process		ept of E	nergy N	lanagen	nent fun	ctions, a	and ene	rgy		К	2	
CO2	Unde syste		the prine	ciple of e	econom	ic analys	sis and s	ystem e	nergy			к	2	
CO3	Unde	erstand t	the Ener	gy Cons	ervatior	option	s in Ligh	ting and	l its con	trol		к	2	
CO4	Unde	erstand t	the impo	ortance	of SCAD	A and fu	unctiona	l require	ements			к	2	
CO5	Unde	erstand t	the SCAI	DA appli	cations	and wid	e area p	orotectio	ons			к	2	
CORRE		I OF COs	s WITH I	POs ANE) PSOs									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			М						н		М		м	L
CO2	н								н		М		М	L
CO3	Н		М						М		М		М	L
CO4	Н								н		М		М	М
CO5									Н		М		М	М

COURSE CO		1
UNIT I	ENERGY MANAGEMENT FUNCTION	9
and Report	nergy management – energy management program,Energy accounting – Energy monitoring ing, Energy audit process, Energy Management centers and their Functions, Architectures of e ions, Energy performance assessment of HVAC system.	
UNIT II	ECONOMIC ANALYSIS AND SYSTEM ENERGY MANAGEMENT	9
Control, Sy	concepts in an economic analysis, Electricity tariff, Electrical Load Management and Maximu stems and equipment, Electric motors, Transformers, Capacitors -power factor and effect of quality, Energy efficiency analysis on electrical power system, motor and transformer.	
UNIT III	LIGHTING AND COGENERATION	9
Optimizing	lighting systems – the task and the working space, Light sources – ballasts –luminaries, lightin lighting energy, lighting and energy standards, Forms of cogeneration – Feasibility of co formance analysis of lighting and cogeneration.	-
UNIT IV	SUPERVISORY CONTROL AND DATA AQUISITION	9
	nctional requirements and Components, General features, Functions and Applications, Benef nitectures, SCADA Communication: various industrial communication technologies	fits, Variou
UNIT V	SCADA APPLICATIONS	9
• •	lications: Utility Applications, Transmission and distribution sector-Operations, Monitoring, A ent, Substation automation structure, Substation automation architecture, Introduction to	•
	TOTAL: 4	15 PERIOD
техтвоок	S:	
Publ 2. Gorc	rt A. Boyer 'SCADA - Supervisory Control and Data Acquisition', Instrument Society of ications, USA, The Instrumentation system and Automation Society, 4 th Edition, 2010 Ion Clarke, Deon Reynders 'Practical Modern SCADA Protocols: DNP3, 60870.5 and Related nes An Imprint of Elsevier Publications, 1 st Edition, 2004	
REFERENCI	E BOOKS:	
		07
1. Way	ne C. Turner, Steve Doty 'Energy Management Hand Book', The Fairmont Press, 6 th Edition, 20	

2. Amit K. Tyagi, 'Handbook on Energy Audits and Management', Tata Energy Research Institute, 2nd Reprint, 2003

	URSECC	DE:				COU	IRSE TIT	LE:					ГР	C
10	212EE1	73			POWE	R SYSTE	M REST	RUCTU	RING			3 (0 0	3
COUR	SE CATE	GORY:	Honors											
		•			edge ab i technio		concep	ts of po	wer sys	tem loa	d flow a	analysis	, fault a	nalysis
PRERE	QUISIT		SES: Pov	wer Syst	em Ana	lysis								
	objectiv • To re • To co • To • To	res of th o under estructur o unde ongestio o unders o unders	e course stand t ring. rstand on mana stand th stand th	he oper the iss gement he basic he essen	make th ration c sues re	of restro lated t cture, tr ectric er	uctured o Rest ansfer c nergy tra	ructurin apabilit ading, v	g and y issues olatility	about and tra	transm	ission on serv	manage	
		COMES: cessful c		ion of th	ne cours	e, stude	ents will	be able	to:					
CO Nos.				C	Course C	Dutcom						revise	Level (B d Bloom	
	Eluci	date the	e conce		Course C		es					revise Taxor	-	
Nos. CO1				pt of De	regulati	on, diffe	es erent er	ntities				Taxor	d Bloom nomy) 2	
Nos. CO1 CO2	Expla	ain the c	concept	pt of De of mark	regulati xet struc	on, diffe	es erent er nd biddi	ntities				revise Taxor K	d Bloom nomy) 2 2	
Nos. CO1 CO2 CO3	Expla Expla	ain the c	concept	ot of De of mark ssion pri	regulati cet struc	on, diffe tures an	es erent er nd biddi Ancillar	ntities				revise Taxor K K	d Bloom homy) 2 2 2 2	
Nos. CO1 CO2 CO3 CO4	Expla Expla	ain the c ain the t ain the A	concept ransmis Ancillary	of mark of mark ssion pri	regulati cet struc cing issu	on, diffe tures an ues and gement	es erent er nd biddi Ancillar	ntities				revise Taxor K K K	d Bloom homy) 2 2 2 2 2 2 2 2 2	
Nos. CO1 CO2 CO3 CO4 CO5	Expla Expla Expla Addr	ain the c ain the t ain the A ress the	concept ransmis Ancillary technica	of mark of mark ssion pri v service al challe	regulati et struc cing issu s manag enges in	on, diffe tures an ues and gement	es erent er nd biddi Ancillar	ntities				revise Taxor K K K	d Bloom homy) 2 2 2 2	
Nos. CO1 CO2 CO3 CO4 CO5 CORRI	Expla Expla Expla Addr	ain the c ain the t ain the <i>A</i> ress the N OF CO	concept ransmis Ancillary technica s WITH	of mark of mark ssion pri v service al challe POs AN	regulati cet struc cing issu s manag enges in D PSOs	on, diffe tures an ues and gement Restruc	es erent er nd biddi Ancillar	ntities ing ry servic	es		on	revise Taxor K K K	d Bloom homy) 2 2 2 2 2 2 2 2 2	ı's
Nos. CO1 CO2 CO3 CO4 CO5 CORRI COs	Expla Expla Expla Addr ELATION PO1	ain the c ain the t ain the A ress the	concept ransmis Ancillary technica	of mark of mark ssion pri v service al challe	regulati et struc cing issu s manag enges in	on, diffe tures an ues and gement	es erent er nd biddi Ancillar	ntities	es PO9	P010	PO11	revise Taxor K K K	d Bloom homy) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	r's
Nos. CO1 CO2 CO3 CO4 CO5 CO5 CO8 CO1	Expla Expla Expla Addr ELATION PO1 M	ain the c ain the t ain the <i>A</i> ress the N OF CO	concept ransmis Ancillary technica s WITH PO3	of mark of mark ssion pri v service al challe POs AN	regulati cet struc cing issu s manag enges in D PSOs	on, diffe tures an ues and gement Restruc	es erent er nd biddi Ancillar	ntities ing ry servic	es	PO10	on P011 M	revise Taxor K K K	d Bloom homy) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	r's PSO M
Nos. CO1 CO2 CO3 CO4 CO5 CO5 CO5 CO1 CO2	Expla Expla Expla Addr ELATION PO1 M M	ain the c ain the t ain the <i>A</i> ress the N OF CO	concept ransmis Ancillary technica s WITH	of mark of mark ssion pri v service al challe POs AN	regulati cet struc cing issu s manag enges in D PSOs	on, diffe tures an ues and gement Restruc	es erent er nd biddi Ancillar	ntities ing ry servic	es PO9	P010	PO11	revise Taxor K K K	d Bloom homy) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	r's
Nos. CO1 CO2 CO3 CO4 CO5 CO5 CO8 CO1	Expla Expla Expla Addr ELATION PO1 M	ain the c ain the t ain the <i>A</i> ress the N OF CO	concept ransmis Ancillary technica s WITH PO3	of mark of mark ssion pri v service al challe POs AN	regulati cet struc cing issu s manag enges in D PSOs	on, diffe tures an ues and gement Restruc	es erent er nd biddi Ancillar	ntities ing ry servic	es PO9 M	P010	on P011 M	revise Taxor K K K	d Bloom homy) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	r's PSO2 M M

COURSE CO	NTENT:	
UNIT I	DEREGULATION OF ELECTRIC SUPPLY INDUSTRY	9
Introduction	n about deregulation – Structure of restructured electric utility – Different entities – Der	regulation
situation ar	ound the world (Qualitative treatment) – Benefits from competitive electricity market	et – After
effects of de	eregulation. Role of Load Managers.	
UNIT II	POWER SYSTEM OPERATION IN COMPETITIVE ENVIRONMENT	9
bilateral ma	 Comparison of two different market structures – Operational planning activities of ISC arkets – Operational planning activities of GENCO – GENCO in pool and bilateral markets n issues – Competitive bidding. 	
UNIT III	TRANSMISSION OPEN ACCESS AND PRICING ISSUES	9
	eling – Types of transmission services in open access – Cost components in transmission – sactions – Pricing mechanisms in various countries.	Pricing of
UNIT IV	ANCILLARY SERVICES MANAGEMENT	9
	scription of some ancillary services – Ancillary service management in various countries - n ancillary service – Synchronous generators as ancillary service providers	- Reactive
UNIT V	TECHNICAL CHALLENGES AND AVAILABILITY BASED TARIFF	9
compute A	er capability – Limitations - Margins – Available transfer capability (ATC) – Procedure - M TC – Static and Dynamic ATC –Concept of Congestion Management – Bid, Zonal a Principles - Generation Rescheduling,beneficiaries and applications	
	TOTAL: 45	PERIODS
TEXTBOOKS): 	
Kluwe	ar Bhattacharya, Math H.J. Bollen and Jaap E. Daalder, 'Operation of Restructured Power er Academic Publishers, 2001. ei Lai, 'Power system Restructuring and Deregulation', John Wiley Sons, 2001.	Systems',
REFERENCE	BOOKS:	
	dehpour.M and Alomoush.M, 'Restructuring Electrical Power Systems', Marcel Decker Inc. c, F.Galiana and L.Fink, 'Power Systems Restructuring: Engineering and Economics	

Academic Publishers, 2000.

COURSECODE:

COURSE TITLE:

DISTRIBUTED GENERATION AND MICRO GRID

L T P C 3 0 0 3

10212EE174

COURSE CATEGORY: Honors

PREAMBLE: Distributed Generation system would provide the platform for the use of renewable sources which are the key to a sustainable energy supply infrastructure. The course aims at giving an adequate exposure in distributed generation systems, economics of distributed resources, and Photovoltaic Systems, State of the art of hybrid systems and major issues of connecting DG into the system.

PREREQUISITE COURSES: Renewable Energy Sources, Power System Analysis

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

- The concept of distributed generation with their effect on distribution system
- The impact of grid integration and its technical aspects
- The concept of Micro grid and its configuration
- The operating modes and control concepts of micro grid

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO Nos.				C	ourse O	utcome	s					dge Leve Bloom's	-	
CO1		-		of sitting listributi	-	-	listribut	ed gene	ration a	long		К2		
CO2	Analy	ze the r	equiren	nents for	r grid int	tegratio	n and st	andards				К2		
CO3	Expla	in the st	tability a	and pow	er quali	ty issues	on the	system	due to D	OGs		К2		
CO4	Explic	cate the	configu	ration a	nd struc	ture of <i>i</i>	AC and [DC micro	o grids			К2		
CO5	Desci	ribe the	operatio	onal and	control	concep	ts of mi	cro grid				К2		
CORRE		OF COs	S WITH F	POs AND	PSOs					·				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н						М						Н	М
CO2	Н	М		М		М	М						Н	М
CO3	М												Н	М
CO4	Н	М		М			М						Н	М
CO5	Η						М						Н	М

UNIT	I NEED FOR DISTRIBUTED GENERATION	9
	able sources in distributed generation – Current scenario in distributed generation – Plar and sizing of DGs – Optimal placement of DG sources in distribution systems.	ning of DGs
UNIT	II GRID INTEGRATION OF DGS	9
for inte	ot of distributed generations, topologies, selection of sources, regulatory standards/ framew erconnecting Distributed resources to electric power systems: IEEE 1547. DG installation cl in DG implementations. Basics of Energy storage elements: Batteries, ultra-capacitors, flywher	asses, securit
UNIT	III TECHNICAL IMPACTS OF DGS	9
grid ab	ements for grid interconnection, limits on operational parameters, voltage, frequency, THI proormal operating conditions, islanding issues. Impact of grid integration with NCE source system: reliability, stability and power quality issues.	
UNIT I	IV BASICS OF MICROGRID	9
Concep	ot and definition of microgrid, microgrid drivers and benefits, review of sources of micr	ogrids, typica
	are and configuration of a microgrid, AC and DC microgrids, Power Electronics interfaces	in DC and A
microgi UNIT	V CONTROL AND OPERATION OF MICROGRID	9
microgi UNIT Modes control	V CONTROL AND OPERATION OF MICROGRID 5 of operation and control of microgrid: grid connected and islanded mode, Active and r 1, protection issues, anti-islanding schemes: passive, active and communication-based technic unication infrastructure, Power quality issues in micro grids.	9 eactive powe
microgi UNIT Modes control commu	V CONTROL AND OPERATION OF MICROGRID 5 of operation and control of microgrid: grid connected and islanded mode, Active and r 1, protection issues, anti-islanding schemes: passive, active and communication-based technic unication infrastructure, Power quality issues in micro grids.	9 eactive powe
Microgi UNIT Modes control commu	V CONTROL AND OPERATION OF MICROGRID 5 of operation and control of microgrid: grid connected and islanded mode, Active and r 1, protection issues, anti-islanding schemes: passive, active and communication-based technic unication infrastructure, Power quality issues in micro grids.	9 eactive powe jues, microgr L: 45 PERIOD
Modes control commu TEXTBC 1.	V CONTROL AND OPERATION OF MICROGRID 5 of operation and control of microgrid: grid connected and islanded mode, Active and r 1, protection issues, anti-islanding schemes: passive, active and communication-based technic unication infrastructure, Power quality issues in micro grids. TOTA OOKS: H. Lee Willis, Walter G. Scott, 'Distributed Power Generation – Planning and Evaluation',	9 eactive powe jues, microgr L: 45 PERIOD
microgi UNIT Modes control commu TEXTBC 1. 2.	V CONTROL AND OPERATION OF MICROGRID a of operation and control of microgrid: grid connected and islanded mode, Active and r l, protection issues, anti-islanding schemes: passive, active and communication-based technic unication infrastructure, Power quality issues in micro grids. TOTA OOKS: H. Lee Willis, Walter G. Scott, 'Distributed Power Generation – Planning and Evaluation', Press, 2000. Robert Lasseter, Paolo Piagi, 'Micro-grid: A Conceptual Solution', PESC 2004, June 2004.	9 eactive powe jues, microgr L: 45 PERIOD
microgi UNIT Modes control commu TEXTBO 1. 2. REFERE	V CONTROL AND OPERATION OF MICROGRID 5 of operation and control of microgrid: grid connected and islanded mode, Active and r 1, protection issues, anti-islanding schemes: passive, active and communication-based technic unication infrastructure, Power quality issues in micro grids. TOTAI OOKS: H. Lee Willis, Walter G. Scott, 'Distributed Power Generation – Planning and Evaluation', Press, 2000.	9 eactive power jues, microgr L: 45 PERIOD Marcel Decker gy Resources
Modes control commu TEXTBC 1. 2. REFERE 1.	grids. V CONTROL AND OPERATION OF MICROGRID cof operation and control of microgrid: grid connected and islanded mode, Active and r l, protection issues, anti-islanding schemes: passive, active and communication-based technic unication infrastructure, Power quality issues in micro grids. TOTAI OOKS: H. Lee Willis, Walter G. Scott, 'Distributed Power Generation – Planning and Evaluation', Press, 2000. Robert Lasseter, Paolo Piagi, 'Micro-grid: A Conceptual Solution', PESC 2004, June 2004. ENCE BOOKS: F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Energy	9 eactive power jues, microgr L: 45 PERIOD Marcel Decker gy Resources e 19-23, 200
microgr UNIT Modes control commu TEXTBO 1. 2. REFERE 1. 2.	Prids. V CONTROL AND OPERATION OF MICROGRID a of operation and control of microgrid: grid connected and islanded mode, Active and rel, protection issues, anti-islanding schemes: passive, active and communication-based technic unication infrastructure, Power quality issues in micro grids. TOTAI OOKS: H. Lee Willis, Walter G. Scott, 'Distributed Power Generation – Planning and Evaluation', Press, 2000. Robert Lasseter, Paolo Piagi, 'Micro-grid: A Conceptual Solution', PESC 2004, June 2004. ENCE BOOKS: F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Ener International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on Jun Bollen M.H. and Hassan F. (2011); Integration of Distributed Generation in the Power System	9 eactive powe jues, microgr L: 45 PERIOD Marcel Decke gy Resources e 19-23, 200 em, Wiley-IEE
microgr UNIT Modes control commu TEXTBO 1. 2. REFERE 1. 2.	 CONTROL AND OPERATION OF MICROGRID a of operation and control of microgrid: grid connected and islanded mode, Active and r I, protection issues, anti-islanding schemes: passive, active and communication-based technic unication infrastructure, Power quality issues in micro grids. TOTAI OOKS: H. Lee Willis, Walter G. Scott, 'Distributed Power Generation – Planning and Evaluation', Press, 2000. Robert Lasseter, Paolo Piagi, 'Micro-grid: A Conceptual Solution', PESC 2004, June 2004. ENCE BOOKS: F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Ener International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on Jun Bollen M.H. and Hassan F. (2011); Integration of Distributed Generation in the Power System Press Nikos Hatziargyriou, "Microgrids: Architectures and Control", ISBN: 978-1-118- 72068-4, Descent and the prese of the second secon	9 eactive powe jues, microgri L: 45 PERIOD Marcel Decke gy Resources e 19-23, 2009 em, Wiley-IEE ecember 2013

COU	IRSECO	DE:				CO	URSE TI	TLE:				L	Т	Ρ	С
102	212EE1	75			IoT A	PPLICAT			r grid			3	0	0	3
COURS	E CATE	GORY: H	Honors												
			e the st hnology		•		-		erent o	ptions o	f commı	unicatio	on tec	hnol	logies
PREREC	QUISITI		SES: Pow	ver Syste	em Analy	ysis									
COURS	E EDUC	CATION	AL OBJE	CTIVES:											
The	-		he cours												
		-	ing area			-		Grid.							
			Things a	and Sma	rt Grid A	Applicati	ions.								
		COMES: cessful co	ompletio	on of the	e course	studer	nts will b	e able t	0:						
CO Nos.			<u> </u>		Course C	*					Knowle revised	-	-		
CO1	Desc	ribe the	concep	ts of Inte	ernet of	Things a	and Sma	rt Grid				к	2		
CO2	Expla	in the lo	oT techr	ologies	and con	nmunica	tion tec	hnologi	es			к	2		
CO3	Expli	cate the	applica	tions of	HAN, N	AN and V	WAN					К	2		
CO4	Spell	out the	suitable	e archite	ctures f	or loT ai	ded Sm	art grid :	systems	5		к	2		
CO5			he suita f IoT aid			•	ble app	lications	and ex	kisting		к	2		
CORREI		I OF CO	s WITH I	POs ANE) PSOs										
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSC	01	PSO2
CO1	Н		М				М						Н		Μ
CO2	Н						М						Н		Μ
CO3	Н		Н										Н		Μ
CO4	Н			Н		Н	М						N	I	Μ
CO5	Н						М						N	1	М
COURS		TENT:													
UNIT	'I I		SMART	GRID											9
Interne Smart G		ings - Sn	nart Grio	d- Impor	tance of	f Smart (Grid in S	imart Cit	ties-Inte	egration	of the In	iternet	of Thi	ngs i	into a
UNIT	II I	oT AND	сомм	JNICATI	ON TEC	HNOLO	GIES								9
						-			-	-	Neighboi grid syste		Area	Net	tworl

UNIT III	APPLICATIONS OF IOTAIDED SMART GRID SYSTEMS	9
application	ations: Smart Home – Electric vehicle – AMI – Integration of DERs – Power demand managem s: Smart Distribution – smart patrol – WAN applications: Transmission tower protection – mon smission lines.	
UNIT IV	ARCHITECTURES FOR IOT AIDED SMART GRID SYSTEMS	9
	Architecture Model – Three layered architecture – Four layered architecture – Cloud based arc oled smart grid architecture – Last meter smart grid architecture.	chitecture
UNIT V	PROTOTYPES FOR IOT AIDED SMART GRID SYSTEMS	9
A Simple Pr	ototype for Energy Efficiency- Integration of Renewable and Non-Renewable energy Sources	at Home-
In Home A	opliance Monitoring Implementation- Real time Monitoring of Medium Voltage Grid – Open	issues &
challenges.		
	TOTAL: 45	PERIODS
TEXTBOOK	S:	
1. P. Wa	aher, 'Learning Internet of Things' Packt Publishing, 2015.	
2. N. Ra	mesh Babu, 'Smart Grid Systems: Modeling and Control', CRC Press, 2018.	
REFERENCE	BOOKS:	
1 D Ko	Ilmereit, 'The Silent Intelligence: The Internet of Things' DnD Ventures, 2013.	
1. D.Ke		
	Sioshansi, 'Smart Grid: Integrating Renewable, Distributed and Efficient Energy', Academic Pres	s, 2011.

S. Borlase, 'Smart Grids: Advanced Technologies and Solutions', 2nd Edition. CRC Press, 2017.

COURSECODE: COURSE TITLE: L Т Ρ С 10212EE176 **AI FOR SMART GRID SYSTEMS** 3 0 0 3 **COURSE CATEGORY:** Honors **PREAMBLE:** To enable the students acquire knowledge on artificial intelligent, different options of programming language related to emerging technology for various aspects of smart grid. **PREREQUISITE COURSES:** Power System Engineering **COURSE EDUCATIONAL OBJECTIVES:** The objectives of the course are to make the students, • To understand the principles and approaches of artificial intelligence (AI) To convey the ideas in AI research and programming language related to emerging technology. To expose the real-world applications of AI ٠ **COURSE OUTCOMES:** Upon the successful completion of the course, students will be able to: со Knowledge Level (Based on **Course Outcomes** revised Bloom's Taxonomy) Nos. CO1 Explore the fundamental concepts in Artificial Intelligence К2 Explain the AI technologies and solving problems in real world К2 CO2 К2 CO3 Describe the applications of pattern recognition and its application CO4 К2 Explain the artificial neural networks and different learning Enumerate the possible applications and existing prototypes of AI aided CO5 К2 smart grid systems **CORRELATION OF COS WITH POS AND PSOS** COs PO1 PO2 PO3 **PO4** PO5 **PO6 PO7 PO8 PO9** PO10 PO11 PO12 PSO1 PSO2 CO1 Н Μ Μ CO2 Н Μ CO3 Н Μ CO4 Н Μ Μ М

М

CO5

Н

UNIT I	INTRODUCTION TO AI	9
searching to knowledge	Applications, Components of an AI program, production system, Problem Characteristics, over the echniques. Knowledge representation: Knowledge representation issues, and overview. Representation rules; procedural versus declarative knowledge. Logic programming, forward versus natching control knowledge.	oresenting
UNIT II	AI TECHNOLOGIES	9
	epresentation and Schemes- Problem Solving in AI- Blind Search Techniques- Heurist - Game Searches- Computer Vision- Natural Language Processing- Speech Recognition.	ic Search
UNIT III	PATTERN RECOGNITION	9
concept of	n, automatic pattern recognition scheme. Design Concepts, Methodologies, Concepts of feature selection. Feature selection based on means and covariances. Statistical classif incrementcorrection and LMSE. Algorithms, Applications.	
UNIT IV	ARTIFICIAL NEURAL NETWORKS	0
0.0.1	ANTIFICIAL NEURAL NET WORKS	9
Biological N	leuron, Neural Net, use of neural 'nets, applications, Perception, idea of single layer and backpropagation, Hopfield nets, supervised and unsupervised learning, reinforcement learn	multilayeı
Biological N	leuron, Neural Net, use of neural 'nets, applications, Perception, idea of single layer and	multilayeı
Biological N neural nets, UNIT V Case-Based	leuron, Neural Net, use of neural 'nets, applications, Perception, idea of single layer and backpropagation, Hopfield nets, supervised and unsupervised learning, reinforcement learn	multilayei ing. 9
Biological N neural nets, UNIT V Case-Based	leuron, Neural Net, use of neural 'nets, applications, Perception, idea of single layer and backpropagation, Hopfield nets, supervised and unsupervised learning, reinforcement learn APPLICATIONS OF ARTIFICIAL INTELLIGENCE Reasoning- Applications of CBR Systems- Constraint Programming- AI Applications: E-Com	multilayei ing. 9 imerce, E
Biological N neural nets, UNIT V Case-Based	leuron, Neural Net, use of neural 'nets, applications, Perception, idea of single layer and backpropagation, Hopfield nets, supervised and unsupervised learning, reinforcement learn APPLICATIONS OF ARTIFICIAL INTELLIGENCE Reasoning- Applications of CBR Systems- Constraint Programming- AI Applications: E-Com dustry, case study of smart grid TOTAL: 45	multilayer ing. 9 imerce, E
Biological N neural nets, UNIT V Case-Based Tourism, Ind TEXTBOOKS 1. Kevin Instit	leuron, Neural Net, use of neural 'nets, applications, Perception, idea of single layer and backpropagation, Hopfield nets, supervised and unsupervised learning, reinforcement learn APPLICATIONS OF ARTIFICIAL INTELLIGENCE Reasoning- Applications of CBR Systems- Constraint Programming- AI Applications: E-Com dustry, case study of smart grid TOTAL: 45	multilaye ing. 9 merce, E PERIODS
Biological N neural nets, UNIT V Case-Based Tourism, Ind TEXTBOOKS 1. Kevin Instit	leuron, Neural Net, use of neural 'nets, applications, Perception, idea of single layer and backpropagation, Hopfield nets, supervised and unsupervised learning, reinforcement learn APPLICATIONS OF ARTIFICIAL INTELLIGENCE Reasoning- Applications of CBR Systems- Constraint Programming- AI Applications: E-Com dustry, case study of smart grid TOTAL: 45 S: Warwick, Arthur Ekwue and Raj Aggarwal, 'Artificial Intelligence Techniques in Power Syst ution of Electrical Engineers, 1997. dra Akerkar, 'Introduction to Artificial Intelligence' 2 nd Edition, Prentice-Hall India Pvt. Ltd., 20	multilaye ing. 9 merce, E PERIODS
Biological N neural nets, UNIT V Case-Based Tourism, Inc TEXTBOOKS 1. Kevin Instit 2. Rajer REFERENCE	leuron, Neural Net, use of neural 'nets, applications, Perception, idea of single layer and backpropagation, Hopfield nets, supervised and unsupervised learning, reinforcement learn APPLICATIONS OF ARTIFICIAL INTELLIGENCE Reasoning- Applications of CBR Systems- Constraint Programming- AI Applications: E-Com dustry, case study of smart grid TOTAL: 45 S: Warwick, Arthur Ekwue and Raj Aggarwal, 'Artificial Intelligence Techniques in Power Syst ution of Electrical Engineers, 1997. dra Akerkar, 'Introduction to Artificial Intelligence' 2 nd Edition, Prentice-Hall India Pvt. Ltd., 20	multilaye ing. 9 merce, E 9 9 9 9 1 1 9 1 1 1 1 1 1 1 1 1 1
Biological N neural nets, UNIT V Case-Based Tourism, Ind TEXTBOOKS 1. Kevin Instit 2. Rajer REFERENCE 1. Ma	leuron, Neural Net, use of neural 'nets, applications, Perception, idea of single layer and backpropagation, Hopfield nets, supervised and unsupervised learning, reinforcement learn APPLICATIONS OF ARTIFICIAL INTELLIGENCE Reasoning- Applications of CBR Systems- Constraint Programming- AI Applications: E-Com dustry, case study of smart grid TOTAL: 45 S: Warwick, Arthur Ekwue and Raj Aggarwal, 'Artificial Intelligence Techniques in Power Syst ution of Electrical Engineers, 1997. dra Akerkar, 'Introduction to Artificial Intelligence' 2 nd Edition, Prentice-Hall India Pvt. Ltd., 20 BOOKS:	multilaye ing. 9 merce, E 9 9 9 9 1 1 9 1 1 1 1 1 1 1 1 1 1
Biological N neural nets, UNIT V Case-Based Tourism, Ind TEXTBOOKS 1. Kevin Instit 2. Rajer REFERENCE 1. Ma 2. Wo 3. Eug	leuron, Neural Net, use of neural 'nets, applications, Perception, idea of single layer and backpropagation, Hopfield nets, supervised and unsupervised learning, reinforcement learn APPLICATIONS OF ARTIFICIAL INTELLIGENCE Reasoning- Applications of CBR Systems- Constraint Programming- AI Applications: E-Com dustry, case study of smart grid TOTAL: 45 S: Warwick, Arthur Ekwue and Raj Aggarwal, 'Artificial Intelligence Techniques in Power Syst ution of Electrical Engineers, 1997. dra Akerkar, 'Introduction to Artificial Intelligence' 2 nd Edition, Prentice-Hall India Pvt. Ltd., 20 BOOKS: riuszFlasiński, 'Introduction to Artificial Intelligence', Springer,2016 Ifgang Ertel, 'Introduction to Artificial Intelligence', Springer, 2017. ene Charniak, 'Introduction to Artificial Intelligence', Pearson Education, 2016	multilaye ing. 9 merce, E 9 9 9 9 1 1 9 1 1 1 1 1 1 1 1 1 1
Biological N neural nets, UNIT V Case-Based Tourism, Ind TEXTBOOKS 1. Kevin Instit 2. Rajer REFERENCE 1. Ma 2. Wo 3. Eug 4. N. F	leuron, Neural Net, use of neural 'nets, applications, Perception, idea of single layer and backpropagation, Hopfield nets, supervised and unsupervised learning, reinforcement learn APPLICATIONS OF ARTIFICIAL INTELLIGENCE Reasoning- Applications of CBR Systems- Constraint Programming- AI Applications: E-Com dustry, case study of smart grid TOTAL: 45 S: Warwick, Arthur Ekwue and Raj Aggarwal, 'Artificial Intelligence Techniques in Power Syst ution of Electrical Engineers, 1997. Indra Akerkar, 'Introduction to Artificial Intelligence' 2 nd Edition, Prentice-Hall India Pvt. Ltd., 20 BOOKS: riuszFlasiński, 'Introduction to Artificial Intelligence', Springer, 2016 Ifgang Ertel, 'Introduction to Artificial Intelligence', Springer, 2017.	multilaye ing. merce, E PERIOD